Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(32): 26830-26834, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063820

RESUMO

Cyclometalated IrIII complexes are promising candidates for biomedical applications but high cytotoxicity limits their use as imaging and sensing agents. We herein introduce the use of Laponite as carrier for triplet-emitting cyclometalated IrIII complexes. Laponite is a versatile nanoplatform because of its biocompatibility, dispersion stability and large surface area that readily adsorbs functional nonpolar and cationic molecules. These inorganic-organic hybrid nanomaterials mask cytotoxicity, show efficient cell uptake and increase luminescent properties and photostability. By camouflaging intrinsic cytotoxicity, this simple method potentially extends the palette of available imaging and sensing dyes to any metal-organic complexes, especially those that are usually cytotoxic.


Assuntos
Irídio/química , Materiais Biocompatíveis , Cátions , Luminescência , Nanoestruturas , Compostos Organometálicos , Piridinas
2.
ACS Appl Bio Mater ; 1(4): 1028-1036, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996143

RESUMO

Core-shell nanoparticles operating by infrared-to-visible energy upconversion (UCNPs) have been proposed as theranostic carriers for photosensitizers to increase deep-tissue penetration of photodynamic therapy against tumors and bacterial infections. Herein we present a series of core-shell mesoporous silica-coated NaYF4:Yb:Er UCNPs (mSiO2@UCNP) with different surface functionalizations to enhance bacterial targeting and loaded with the hydrophobic photosensitizer SiPc (silicon 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine dihydroxide) to boost the bactericidal effect against Gram-positive and Gram-negative bacteria upon near-infrared irradiation. Förster resonance energy transfer (FRET) from the UCNP core to loaded SiPc was facilitated, while its efficiency depended on UCNP shell functionalization, which influences the SiPc penetration depth into the mesoporous silica, constituting a convenient tool to modify FRET intensity. Functionalized UCNPs displayed dark toxicity toward Gram-negative E. coli of up to 5 orders of magnitude, while Gram-positive S. aureus viability was not decreased in the dark, offering practical means for discriminating between the two bacterial strains. Directly exciting SiPc on the UNCP led to complete eradication of E. coli and a drastic decrease of colony-forming units of S. aureus of up to 7 orders of magnitude. With this study, we demonstrate strategies to potentiate antimicrobial photodynamic therapy on nanoparticular structures that can lead to next-generation photosensitizing systems based on UCNPs to help encounter and eradicate resistant bacteria, as well as for theranostics and future in vivo applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA