Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39304550

RESUMO

Due to the anatomical complexity of the aortic arch for the development of stent-grafts for total repair, this region remains without a validated and routinely used endovascular option. In this work, a modular stent-graft for aneurysms that covers all aortic arch zones, proposed by us and previously structurally evaluated, was evaluated from the point of view of haemodynamics using fluid-structural numerical simulations. Blood was assumed to be non-Newtonian shear-thinning using the Carreau model, and the arterial wall was assumed to be anisotropic hyperelastic using the Holzapfel model. Nitinol and expanded polytetrafluoroethylene (PTFE-e) were used as materials for the stents and the graft, respectively. Nitinol was modelled as a superelastic material with shape memory by the Auricchio model, and PTFE-e was modelled as an isotropic linear elastic material. To validate the numerical model, a silicone model representative of the aneurysmal aorta was subjected to tests on an experimental bench representative of the circulatory system. The numerical results showed that the stent-graft restored flow behaviour, making it less oscillatory, but increasing the strain rate, turbulence kinetic energy, and viscosity compared to the pathological case. Taking the mean of the entire cycle, the increase in turbulence kinetic energy was 198.82% in the brachiocephalic trunk, 144.63% in the left common carotid artery and 284.03% in the left subclavian artery after stent-graft implantation. Based on wall shear stress parameters, it was possible to identify that the internal branches of the stent-graft and the stent-graft fixation sites in the artery were the most favourable regions for the deposition and accumulation of thrombus. In these regions, the oscillating shear index reached the maximum value of 0.5 and the time-averaged wall shear stress was close to zero, which led the relative residence time to reach values above 15 Pa-1. The stent-graft was able to preserve flow in the supra-aortic branches.

2.
An Acad Bras Cienc ; 95(suppl 1): e20210859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255166

RESUMO

Hemodynamic forces are related to pathological variations of the cardiovascular system, and numerical simulations for fluid-structure interaction have been systematically used to analyze the behavior of blood flow and the arterial wall in aortic aneurysms. This paper proposes a comparative analysis of 1-way and 2-way coupled fluid-structure interaction for aortic arch aneurysm. The coupling models of fluid-structure interaction were conducted using 3D geometry of the thoracic aorta from computed tomography. Hyperelastic anisotropic properties were estimated for the Holzapfel arterial wall model. The rheological behavior of the blood was modeled by the Carreau-Yasuda model. The results showed that the 1-way approach tends to underestimate von Mises stress, displacement, and strain over the entire cardiac cycle, compared to the 2-way approach. In contrast, the behavior of the variables of flow field, velocity, wall shear stress, and Reynolds number when coupled by the 1-way model was overestimated at the systolic moment and tends to be equal at the diastolic moment. The quantitative differences found, especially during the systole, suggest the use of 2-way coupling in numerical simulations of aortic arch aneurysms due to the hyperelastic nature of the arterial wall, which leads to a strong iteration between the fluid and the arterial wall.


Assuntos
Aneurisma do Arco Aórtico , Aneurisma Aórtico , Humanos , Modelos Cardiovasculares , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA