Your browser doesn't support javascript.
loading
Numerical analysis of blood flow in a branched modular stent-graft for aneurysms covering all zones of the aortic arch.
Silva, Mário Luis Ferreira da; Costa, Matheus Carvalho Barbosa; Gonçalves, Saulo de Freitas; Huebner, Rudolf; Navarro, Túlio Pinho.
Afiliação
  • Silva MLFD; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil. marioluisfs@gmail.com.
  • Costa MCB; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
  • Gonçalves SF; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
  • Huebner R; Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
  • Navarro TP; Department of Surgery, Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
Article em En | MEDLINE | ID: mdl-39304550
ABSTRACT
Due to the anatomical complexity of the aortic arch for the development of stent-grafts for total repair, this region remains without a validated and routinely used endovascular option. In this work, a modular stent-graft for aneurysms that covers all aortic arch zones, proposed by us and previously structurally evaluated, was evaluated from the point of view of haemodynamics using fluid-structural numerical simulations. Blood was assumed to be non-Newtonian shear-thinning using the Carreau model, and the arterial wall was assumed to be anisotropic hyperelastic using the Holzapfel model. Nitinol and expanded polytetrafluoroethylene (PTFE-e) were used as materials for the stents and the graft, respectively. Nitinol was modelled as a superelastic material with shape memory by the Auricchio model, and PTFE-e was modelled as an isotropic linear elastic material. To validate the numerical model, a silicone model representative of the aneurysmal aorta was subjected to tests on an experimental bench representative of the circulatory system. The numerical results showed that the stent-graft restored flow behaviour, making it less oscillatory, but increasing the strain rate, turbulence kinetic energy, and viscosity compared to the pathological case. Taking the mean of the entire cycle, the increase in turbulence kinetic energy was 198.82% in the brachiocephalic trunk, 144.63% in the left common carotid artery and 284.03% in the left subclavian artery after stent-graft implantation. Based on wall shear stress parameters, it was possible to identify that the internal branches of the stent-graft and the stent-graft fixation sites in the artery were the most favourable regions for the deposition and accumulation of thrombus. In these regions, the oscillating shear index reached the maximum value of 0.5 and the time-averaged wall shear stress was close to zero, which led the relative residence time to reach values above 15 Pa-1. The stent-graft was able to preserve flow in the supra-aortic branches.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomech Model Mechanobiol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomech Model Mechanobiol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Alemanha