Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. infect. dis ; Braz. j. infect. dis;24(5): 412-421, Sept.-Oct. 2020. tab, graf
Artigo em Inglês | LILACS, Coleciona SUS | ID: biblio-1142550

RESUMO

Abstract Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were "medium-risk" (D-dimer >1000 ng/mL or CRP >200 mg/L); "high-risk" (D-dimer >3000 ng/mL or CRP >250 mg/L) or "suspected" (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.


Assuntos
Idoso , Humanos , Masculino , Pneumonia Viral , Tromboembolia , Infecções por Coronavirus , Pandemias , Pneumonia Viral/epidemiologia , Estudos Prospectivos , Citocinas , Infecções por Coronavirus/epidemiologia , Betacoronavirus , SARS-CoV-2 , COVID-19 , Pacientes Internados
2.
Braz J Infect Dis ; 24(5): 412-421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857990

RESUMO

INTRODUCTION: Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. METHODS: Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were "medium-risk" (D-dimer >1000ng/mL or CRP >200mg/L); "high-risk" (D-dimer >3000ng/mL or CRP >250mg/L) or "suspected" (D-dimer >5000ng/mL). Cytokine storm risk was categorized by ferritin. RESULTS: 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p<0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p<0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p<0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p=0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p<0.001. In subgroup analyses, older patients, males, and patients with hypertension (p≤0.01), and/or diabetes (p=0.05) derived the greatest benefit from admission under the traffic light system. CONCLUSION: Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Tromboembolia , Idoso , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Citocinas , Humanos , Pacientes Internados , Masculino , Pneumonia Viral/epidemiologia , Estudos Prospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA