Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288929

RESUMO

This research examines the interaction between human serum albumin (HSA) and various sugar forms (ß-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.Communicated by Ramaswamy H. Sarma.

2.
Chem Biol Interact ; 388: 110826, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101596

RESUMO

Although various regulatory agencies have banned or severely restricted the use of carbofuran (CAR), recent reports indicate the presence of CAR residues in both cultivated and wild areas. This pesticide is a potent inhibitor of acetylcholinesterase (AChE), which acts by preventing the hydrolysis of acetylcholine (ACh). Given the critical role of AChE::ACh in the proper functioning of the nervous system, we thought it appropriate to investigate the binding of CAR to AChEs from Homo sapiens, Danio rerio, Apis mellifera, and Caenorhabditis elegans using homology modelling, molecular docking, molecular dynamics, and quantum biochemistry. Molecular docking and dynamics results indicated peculiar structural behavior in each AChE::CAR system. Quantum biochemistry results showed similar affinities for all complexes, confirming the description of carbofuran as a broad-spectrum pesticide, and have a limited correlation with IC50 values. We found the following decreasing affinity order of AChE species: H. sapiens > A. mellifera > C. elegans > D. rerio. The computational results suggest that CAR occupies different pockets in the AChEs studied. In addition, our results showed that CAR binds to hsAChE and ceAChE in a very similar manner: it has high affinities for the same subsites in both species and forms hydrogen bonds with residues (hsTYR124 and ceTRP107) occupying homologous positions in the peripheral site. This suggests that this nematode is a potential model to evaluate the toxicity of carbamates, even though the sequence identity between them is only 41 %. Interestingly, we also observed that the catalytic histidines of drAChE and amAChE exhibited favorable contacts with carbofuran, suggesting that the non-covalent binding of carbofuran to these proteins may promote faster carbamylation rates than the binding modes to human and worm acetylcholinesterases. Our computational results provide a better understanding of the binding mechanisms in these complexes, as well as new insights into the mechanism of carbamylation.


Assuntos
Carbofurano , Praguicidas , Humanos , Abelhas , Animais , Carbofurano/farmacologia , Simulação de Acoplamento Molecular , Caenorhabditis elegans/metabolismo , Acetilcolinesterase/metabolismo , Peixe-Zebra/metabolismo , Dor , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
3.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111767

RESUMO

LASSBio-1920 was synthesized due to the poor solubility of its natural precursor, combretastatin A4 (CA4). The cytotoxic potential of the compound against human colorectal cancer cells (HCT-116) and non-small cell lung cancer cells (PC-9) was evaluated, yielding IC50 values of 0.06 and 0.07 µM, respectively. Its mechanism of action was analyzed by microscopy and flow cytometry, where LASSBio-1920 was found to induce apoptosis. Molecular docking simulations and the enzymatic inhibition study with wild-type (wt) EGFR indicated enzyme-substrate interactions similar to other tyrosine kinase inhibitors. We suggest that LASSBio-1920 is metabolized by O-demethylation and NADPH generation. LASSBio-1920 demonstrated excellent absorption in the gastrointestinal tract and high central nervous system (CNS) permeability. The pharmacokinetic parameters obtained by predictions indicated that the compound presents zero-order kinetics and, in a human module simulation, accumulates in the liver, heart, gut, and spleen. The pharmacokinetic parameters obtained will serve as the basis to initiate in vivo studies regarding LASSBio-1920's antitumor potential.

4.
Chem Biol Interact ; 366: 110130, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037875

RESUMO

Atrazine (ATR), one of the most used herbicides worldwide, causes persistent contamination of water and soil due to its high resistance to degradation. ATR is associated with low fertility and increased risk of prostate cancer in humans, as well as birth defects, low birth weight and premature delivery. Describing ATR binding to human serum albumin (HSA) is clinically relevant to future studies about pharmacokinetics, pharmacodynamics and toxicity of ATR, as albumin is the most abundant carrier protein in plasma and binds important small biological molecules. In this work we characterize, for the first time, the binding of ATR to HSA by using fluorescence spectroscopy and performing simulations using molecular docking, classical molecular dynamics and quantum biochemistry based on density functional theory (DFT). We determine the most likely binding sites of ATR to HSA, highlighting the fatty acid binding site FA8 (located between subdomains IA-IB-IIA and IIB-IIIA-IIIB) as the most important one, and evaluate each nearby amino acid residue contribution to the binding interactions explaining the fluorescence quenching due to ATR complexation with HSA. The stabilization of the ATR/FA8 complex was also aided by the interaction between the atrazine ring and SER454 (hydrogen bond) and LEU481(alkyl interaction).


Assuntos
Atrazina , Herbicidas , Aminoácidos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Ácidos Graxos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Albumina Sérica Humana/química , Solo , Espectrometria de Fluorescência , Termodinâmica , Água
5.
Future Microbiol ; 17: 599-606, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354285

RESUMO

Aim: To evaluate the antifungal activity of gallic acid (GA) against the strains of Candida spp. resistant to fluconazole and to determine its mechanism of action. Materials & methods: Antifungal activity was evaluated using the broth microdilution and flow cytometry techniques. Results: GA presented minimum inhibitory concentrations ranging from 16 to 72 µg/ml, causing alterations of the membrane integrity and mitochondrial transmembrane potential, production of reactive oxygen species and externalization of phosphatidylserine. Conclusion: GA has potential antifungal activity against Candida spp.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Apoptose , Morte Celular , Farmacorresistência Fúngica , Fluconazol/farmacologia , Ácido Gálico/farmacologia , Testes de Sensibilidade Microbiana
6.
J Biomol Struct Dyn ; 40(19): 8925-8937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33949286

RESUMO

The recent outbreak caused by SARS-CoV-2 continues to threat and take many lives all over the world. The lack of an efficient pharmacological treatments are serious problems to be faced by scientists and medical staffs worldwide. In this work, an in silico approach based on the combination of molecular docking, dynamics simulations, and quantum biochemistry revealed that the synthetic peptides RcAlb-PepI, PepGAT, and PepKAA, strongly interact with the main protease (Mpro) a pivotal protein for SARS-CoV-2 replication. Although not binding to the proteolytic site of SARS-CoV-2 Mpro, RcAlb-PepI, PepGAT, and PepKAA interact with other protein domain and allosterically altered the protease topology. Indeed, such peptide-SARS-CoV-2 Mpro complexes provoked dramatic alterations in the three-dimensional structure of Mpro leading to area and volume shrinkage of the proteolytic site, which could affect the protease activity and thus the virus replication. Based on these findings, it is suggested that RcAlb-PepI, PepGAT, and PepKAA could interfere with SARS-CoV-2 Mpro role in vivo. Also, unlike other antiviral drugs, these peptides have no toxicity to human cells. This pioneering in silico investigation opens up opportunity for further in vivo research on these peptides, towards discovering new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Domínio Catalítico , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
7.
J Biomol Struct Dyn ; 40(12): 5493-5506, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33427102

RESUMO

Vaccines could be the solution to the current SARS-CoV-2 outbreak. However, some studies have shown that the immunological memory only lasts three months. Thus, it is imperative to develop pharmacological treatments to cope with COVID-19. Here, the in silico approach by molecular docking, dynamic simulations and quantum biochemistry revealed that ACE2-derived peptides strongly interact with the SARS-CoV-2 RBD domain of spike glycoprotein (S-RBD). ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-PepIII and ACE2-Dev-PepIV complexed with S-RBD provoked alterations in the 3D structure of S-RBD, leading to disruption of the correct interaction with the ACE2 receptor, a pivotal step for SARS-CoV-2 infection. This wrong interaction between S-RBD and ACE2 could inhibit the entry of SARS-CoV-2 in cells, and thus virus replication and the establishment of COVID-19 disease. Therefore, we suggest that ACE2-derived peptides can interfere with recognition of ACE2 in human cells by SARS-CoV-2 in vivo. Bioinformatic prediction showed that these peptides have no toxicity or allergenic potential. By using ACE2-derived peptides against SARS-CoV-2, this study points to opportunities for further in vivo research on these peptides, seeking to discover new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Chem Biol Interact ; 344: 109526, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023281

RESUMO

The interaction of the steviol and its glycosides (SG), steviolbioside, and rebaudioside A, with bovine serum albumin (BSA) was studied by absorption and fluorescence spectroscopy techniques alongside molecular docking. The stevia derivatives quenched the fluorescence of BSA by a dynamic quenching mechanism, indicating the interaction between the stevia derivatives and BSA. The binding constant (Kb) of steviol was 100-1000-fold higher than those of SG. The stevia derivative/BSA binding reaction was spontaneous and involved the formation of hydrogen bonds and van der Waals interactions between steviol and steviolbioside with BSA, and water reorganization around the rebaudioside A/BSA complex. Molecular docking pointed out the FA1 and FA9 binding sites of BSA as the probable binding sites of steviol and SG, respectively. In conclusion, steviol enhanced hydrophobicity and small size compared to SG may favor its binding to BSA. As steviol and its glycosides share binding sites on BSA with free fatty acids and drugs, they may be competitively displaced from plasma albumin under various physiological states or disease conditions. These findings are clinically relevant and provide an insight into the pharmacokinetics and pharmacodynamics of the stevia glycosides.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Sítios de Ligação , Bovinos , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Termodinâmica
9.
Plant Sci ; 298: 110590, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771148

RESUMO

Peruvianin-I is a cysteine peptidase (EC 3.4.22) purified from Thevetia peruviana. Previous studies have shown that it is the only germin-like protein (GLP) with proteolytic activity described so far. In this work, the X-ray crystal structure of peruvianin-I was determined to a resolution of 2.15 Å (PDB accession number: 6ORM) and its specific location was evaluated by different assays. Its overall structure shows an arrangement composed of a homohexamer (a trimer of dimers) where each monomer exhibits a typical ß-barrel fold and two glycosylation sites (Asn55 and Asn144). Analysis of its active site confirmed the absence of essential amino acids for typical oxalate oxidase activity of GLPs. Details of the active site and molecular docking results, using a specific cysteine peptidase inhibitor (iodoacetamide), were used to discuss a plausible mechanism for proteolytic activity of peruvianin-I. Histological analyses showed that T. peruviana has articulated anastomosing laticifers, i.e., rows of cells which merge to form continuous tubes throughout its green organs. Moreover, peruvianin-I was detected exclusively in the latex. Because latex peptidases have been described as defensive molecules against insects, we hypothesize that peruvianin-I contributes to protect T. peruviana plants against herbivory.


Assuntos
Glicoproteínas/química , Proteínas de Plantas/química , Thevetia/química , Thevetia/metabolismo , Domínio Catalítico , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Proteólise
10.
ACS Med Chem Lett ; 11(6): 1274-1280, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551011

RESUMO

Synthetically derived samples of (+)-(6aS,11aS)-2,3,9-trimethoxypterocarpan [(+)-1] and its enantiomer [(-)-1], both of which are examples of naturally occurring isoflavonoids, were evaluated, together with the corresponding racemate, as cytotoxic agents against the HL-60, HCT-116, OVCAR-8, and SF-295 tumor cell lines. As a result it was established that compound (+)-1 was particularly active with OVCAR-8 cells being the most sensitive and responding in a dose-dependent manner. A study of cell viability and drug-induced morphological changes revealed the compound causes cell death through a mechanism characteristic of apoptosis. Finally, a computational study of the interactions of compound (+)-1 and (S)-monastrol, an established, synthetically derived, potent, and cell-permeant inhibitor of mitosis, with the kinesin-type protein Eg5 revealed that both bind to this receptor in a similar manner. Significantly, compound (+)-1 binds with greater affinity, an effect attributed to the presence of the associated methoxy groups.

11.
J Phys Chem B ; 123(30): 6421-6429, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283875

RESUMO

We intend to investigate the drug-binding energy of each nucleotide inside the aminoglycoside hygromycin B (hygB) binding site of 30S ribosomal RNA (rRNA) subunit by using the molecular fractionation with conjugate caps (MFCC) strategy based on the density functional theory (DFT), considering the functional LDA/PWC, OBS, and the dielectric constant parametrization. Aminoglycosides are bactericidal antibiotics that have high affinity to the prokaryotic rRNA, inhibiting the synthesis of proteins by acting on the main stages of the translation mechanism, whereas binding to rRNA 16S, a component of the 30S ribosomal subunit in prokaryotes. The identification of the nucleotides presenting the most negative binding energies allows us to stabilize hygB in a suitable binding pocket of the 30S ribosomal subunit. In addition, it should be highlighted that mutations in these residues may probably lead to resistance to ribosome-targeting antibiotics. Quantum calculations of aminoglycoside hygromycin B-ribosome complex might contribute to further quantum studies with antibiotics like macrolides and other aminoglycosides.


Assuntos
Teoria da Densidade Funcional , Higromicina B/química , RNA Ribossômico/química , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Termodinâmica
12.
Phys Chem Chem Phys ; 20(35): 22818-22830, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30151512

RESUMO

Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis. In this work, crystallographic data of uPA complexed with distinct ligands (PDB id: 1SQA, 1SQO, and 1FV9) were used to perform quantum biochemistry calculations based on the framework of density functional theory (DFT) and within the molecular fractionation with conjugated caps (MFCC) scheme. Our calculations revealed a total energy interaction of -107.30, -99.5, and -35.30 kcal mol-1 for two naphthamidine-based compounds (Ul1 and UI2) and 2-amino-5-hydroxybenzimidazole (172), respectively, which are in good agreement with known inhibitory experiments. Residues Asp189, Ser190, Cys191-Cys220, Gln192, Trp 215, Gly216, and Gly219 were identified as the main interacting amino acid residues with interaction energy contributions lower than -4.0 kcal mol-1 for uPA/UI1 and UPA/UI2 complexes. In the case of compound 172, our calculations have shown that the most important interactions occur with residues Asp189, Cys191-Cys220, and Ser190. Our results highlight the relevance of the protonation state of ligands and residues and that the naphthamidine scaffold of UI1 and UI2 is the main determinant of their potency, followed by their aminopyrimidine substitution. Altogether, the results of this work contribute to the understanding of the uPA binding mechanisms of the inhibitory compounds Ul1 and 172, stimulating the use of quantum biochemistry theoretical approaches for the development of new uPA inhibitors as new medicines for cancer treatment.


Assuntos
Benzimidazóis/química , Naftalenos/química , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/química , Humanos , Modelos Moleculares , Ligação Proteica , Teoria Quântica
13.
Int J Biol Macromol ; 117: 565-573, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847781

RESUMO

Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding ß-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of ß-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to ß-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of ß-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut.


Assuntos
Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Vigna/genética , Animais , Sítios de Ligação , Quitina/química , Quitina/genética , Clonagem Molecular , Besouros/patogenicidade , DNA Complementar/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/química , Ligação Proteica , Proteínas de Armazenamento de Sementes/química , Sementes/química , Sementes/genética , Vigna/crescimento & desenvolvimento
14.
Phytochemistry ; 139: 60-71, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414935

RESUMO

The genus Swartzia is a member of the tribe Swartzieae, whose genera constitute the living descendants of one of the early branches of the papilionoid legumes. Legume lectins comprise one of the main families of structurally and evolutionarily related carbohydrate-binding proteins of plant origin. However, these proteins have been poorly investigated in Swartzia and to date, only the lectin from S. laevicarpa seeds (SLL) has been purified. Moreover, no sequence information is known from lectins of any member of the tribe Swartzieae. In the present study, partial cDNA sequences encoding L-type lectins were obtained from developing seeds of S. simplex var. grandiflora. The amino acid sequences of the S. simplex grandiflora lectins (SSGLs) were only averagely related to the known primary structures of legume lectins, with sequence identities not greater than 50-52%. The SSGL sequences were more related to amino acid sequences of papilionoid lectins from members of the tribes Sophoreae and Dalbergieae and from the Cladratis and Vataireoid clades, which constitute with other taxa, the first branching lineages of the subfamily Papilionoideae. The three-dimensional structures of 2 representative SSGLs (SSGL-A and SSGL-E) were predicted by homology modeling using templates that exhibit the characteristic ß-sandwich fold of the L-type lectins. Molecular docking calculations predicted that SSGL-A is able to interact with D-galactose, N-acetyl-D-galactosamine and α-lactose, whereas SSGL-E is probably a non-functional lectin due to 2 mutations in the carbohydrate-binding site. Using molecular dynamics simulations followed by density functional theory calculations, the binding free energies of the interaction of SSGL-A with GalNAc and α-lactose were estimated as -31.7 and -47.5 kcal/mol, respectively. These findings gave insights about the carbohydrate-binding specificity of SLL, which binds to immobilized lactose but is not retained in a matrix containing D-GalNAc as ligand.


Assuntos
DNA Complementar/genética , Fabaceae/genética , Lectinas Tipo C/genética , Lectinas de Plantas/genética , Sequência de Aminoácidos , Carboidratos/análise , Fabaceae/química , Galactose/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Grupos Populacionais , Sementes/química
15.
Biochimie ; 135: 89-103, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28153694

RESUMO

A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu2+ caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.


Assuntos
Antifúngicos/metabolismo , Quitinases/metabolismo , Pichia/enzimologia , Proteínas de Plantas/metabolismo , Vigna/enzimologia , Antifúngicos/química , Antifúngicos/farmacologia , Quitinases/química , Quitinases/farmacologia , Hidrólise , Penicillium/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Ligação Proteica
16.
Neurotox Res ; 31(4): 545-559, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28155214

RESUMO

Research on Parkinson's disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.


Assuntos
Antioxidantes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Neurônios Dopaminérgicos/fisiologia , Tretinoína/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ditiotreitol/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Peróxido de Hidrogênio , Oxirredução/efeitos dos fármacos , Oxidopamina/antagonistas & inibidores , Fosfinas/farmacologia
17.
Medchemcomm ; 8(10): 1993-2002, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108718

RESUMO

In this work, we characterize nor-ß-lapachone-loaded (NßL-loaded) microcapsules prepared using an emulsification/solvent extraction technique. Features such as surface morphology, particle size distribution, zeta potential, optical absorption, Raman and Fourier transform infrared spectra, thermal analysis data, drug encapsulation efficiency, drug release kinetics and in vitro cytotoxicity were studied. Spherical microcapsules with a size of 1.03 ± 0.46 µm were produced with an encapsulation efficiency of approximately 19%. Quantum DFT calculations were also performed to estimate typical interaction energies between a single nor-ß-lapachone molecule and the surface of the microparticles. The NßL-loaded PLGA microcapsules exhibited a pronounced initial burst release. After the in vitro treatment with NßL-loaded microcapsules, a clear phagocytosis of the spheres was observed in a few minutes. The cytotoxic activity against a set of cancer cell lines was investigated.

18.
J Phys Chem A ; 120(28): 5752-65, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409458

RESUMO

The role of hydration on the structural, electronic, optical, and vibrational properties of monohydrated (CaCO3·H2O, hexagonal, P31, Z = 9) and hexahydrated (CaCO3·6H2O, monoclinic, C2/c, Z = 4) calcite crystals is assessed with the help of published experimental and theoretical data applying density functional theory within the generalized gradient approximation and a dispersion correction scheme. We show that the presence of water increases the main band gap of monohydrocalcite by 0.4 eV relative to the anhydrous structure, although practically not changing the hexahydrocalcite band gap. The gap type, however, is modified from indirect to direct as one switches from the monohydrated to the hexahydrated crystal. A good agreement was obtained between the simulated vibrational infrared and Raman spectra and the experimental data, with an infrared signature of hexahydrocalcite relative to monohydrocalcite being observed at 837 cm(-1). Other important vibrational signatures of the lattice, water molecules, and CO3(2-) were identified as well. Analysis of the phonon dispersion curves shows that, as the hydration level of calcite increases, the longitudinal optical-transverse optical phonon splitting becomes smaller. The thermodynamics properties of hexahydrocalcite as a function of temperature resemble closely those of calcite, while monohydrocalcite exhibits a very distinct behavior.

19.
Molecules ; 21(7)2016 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384551

RESUMO

Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-ß-lapachone (NßL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 µm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NßL on PLGA. Finally, the cytotoxic activity of NßL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.


Assuntos
Benzofuranos/administração & dosagem , Cápsulas , Preparações de Ação Retardada , Portadores de Fármacos , Ácido Láctico , Naftoquinonas/administração & dosagem , Ácido Poliglicólico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzofuranos/química , Cápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Concentração Inibidora 50 , Ácido Láctico/química , Masculino , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Naftoquinonas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias da Próstata , Análise Espectral Raman
20.
Bioelectrochemistry ; 108: 46-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26720841

RESUMO

The inhibition of laccase enzymatic catalytic activity by formetanate hydrochloride (FMT) was investigated by cyclic voltammetry and by quantum chemical calculations based on density functional theory with a protein fragmentation approach. The cyclic voltammograms were obtained using a biosensor prepared by enzyme immobilization on gold electrodes modified with gold nanoparticles and 4-aminophenol as the target molecule. The decrease in the peak current in the presence of FMT was used to characterize the inhibition process. The calculations identified Asp206 as the most relevant moiety in the interaction of FMT with the laccase enzymatic ligand binding domain. The amino acid residue Cys453 was important, because the Cys453-FMT interaction energy was not affected by the dielectric constant, although it was not a very close residue. This study provides an overview of how FMT inhibits laccase catalytic activity.


Assuntos
Carbamatos/farmacologia , Poluentes Ambientais/farmacologia , Inibidores Enzimáticos/farmacologia , Lacase/antagonistas & inibidores , Modelos Moleculares , Praguicidas/farmacologia , Teoria Quântica , Biocatálise , Carbamatos/química , Carbamatos/metabolismo , Relação Dose-Resposta a Droga , Condutividade Elétrica , Eletroquímica , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ouro/química , Lacase/química , Lacase/metabolismo , Praguicidas/química , Praguicidas/metabolismo , Conformação Proteica , Eletricidade Estática , Trametes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA