Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 40(3): 171-185, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36803148

RESUMO

This study aimed to produce and characterise microparticles produced from barley residue proteins (BRP) enriched with ß-carotene. The microparticles were obtained by freeze-drying five emulsion formulations with 0.5% w/w whey protein concentrate and different concentrations of maltodextrin and BRP (0, 1.5, 3.0, 4.5 and 6.0% w/w), with the dispersed phase consisting of corn oil enriched with ß-carotene. The mixtures were mechanically mixed and sonicated, the formed emulsions were freeze-drying. The microparticles obtained were tested for encapsulation efficiency, humidity, hygroscopicity, apparent density, scanning electron microscopy (SEM), accelerated stability and bioaccessibility. Microparticles produced with the emulsion containing 6% w/w BRP had lower moisture content (3.47 ± 0.05%), higher encapsulation efficiency (69.11 ± 3.36%), bioaccessibility value of 84.1% and greater ß-carotene protection against thermal degradation. SEM analysis showed that microparticles had sizes ranging from 74.4 to 244.8 µm. These results show that BRP are viable for the microencapsulation of bioactive compounds by freeze-drying.


Assuntos
Hordeum , beta Caroteno , beta Caroteno/química , Emulsões/química , Cerveja , Composição de Medicamentos/métodos , Proteínas do Soro do Leite
2.
Trends Food Sci Technol ; 120: 274-287, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569414

RESUMO

Background: The increasing demand for healthy eating habits and the emergence of the COVID-19 pandemic, which resulted in a health crisis and global economic slowdown, has led to the consumption of functional and practical foods. Bioactive ingredients can be an alternative for healthy food choices; however, most functional compounds are sensitive to the adverse conditions of processing and digestive tract, impairing its use in food matrices, and industrial-scale applications. Microencapsulation by spray chilling can be a viable alternative to reduce these barriers in food processing. Scope and approach: This review discusses the use of spray chilling technique for microencapsulation of bioactive food ingredients. Although this technology is known in the pharmaceutical industry, it has been little exploited in the food sector. General aspects of spray chilling, the process parameters, advantages, and disadvantages are addressed. The feasibility and stability of encapsulated bioactive ingredients in food matrices and the bioavailability in vitro of solid lipid microparticles produced by spray chilling are also discussed. Main findings and conclusions: Research on the microencapsulation of bioactive ingredients by spray chilling for use in foods has shown the effectiveness of this technique to encapsulate bioactive compounds for application in food matrices. Solid microparticles produced by spray chilling can improve the stability and bioavailability of bioactive ingredients. However, further studies are required, including the use of lipid-based encapsulating agents, process parameters, and novel formulations for application in food, beverages, and packaging, as well as in vivo studies to prove the effectiveness of the formulations.

3.
J Microencapsul ; 34(6): 535-544, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28795848

RESUMO

The aim of this work was to study the use of different prebiotic biopolymers in lime essential oil microencapsulation. Whey protein isolate, inulin and oligofructose biopolymers were used. The addition of prebiotic biopolymers reduced emulsion viscosity, although it produced larger droplet sizes (0.31-0.32 µm). Moisture values (2.94-3.13 g/100 g dry solids) and water activity (0.152-0.185) were satisfactory, being within the appropriate range for powdered food quality. Total oil content, limonene retention values and antioxidant activity of the microparticles containing essential oil decreased in the presence of the carbohydrates. The addition of prebiotic biopolymers reduced the microparticle thermal stability. X-ray diffraction confirmed the amorphous characteristic of the microparticles and the interaction of the essential oil with the wall material. The presence of prebiotic biopolymers can be a good alternative for lime essential oil microparticles, mainly using fibre that has a functional food appeal and can improve consumer health.


Assuntos
Compostos de Cálcio/química , Inulina/química , Óleos Voláteis/química , Oligossacarídeos/química , Óxidos/química , Biopolímeros/química , Cicloexenos/química , Emulsões , Limoneno , Tamanho da Partícula , Prebióticos , Terpenos/química , Viscosidade
4.
J Agric Food Chem ; 65(2): 445-453, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28004578

RESUMO

The aim of this study was to include prebiotic biopolymers as wall material in microparticles of lime essential oil. Whey protein isolate (WPI), inulin (IN), and oligofructose (OL) biopolymers were used in the following combinations: WPI, WPI/IN (4:1), and WPI/OL (4:1). The emulsion droplets in the presence of inulin and oligofructose showed larger sizes on reconstitution. There was no significant difference in solubility of the particles, but the wettability was improved on addition of the polysaccharides. The size of the oligofructose chains favored the adsorption of water. Prebiotic biopolymers reduced thermal and chemical stability of the encapsulated oil. Microparticles produced with WPI showed a higher bioactive compound release rate, mainly due to its structural properties, that enabled rapid diffusion of oil through the pores. The use of prebiotic biopolymers can be a good option to add value to encapsulated products, thus promoting health benefits.


Assuntos
Citrus/química , Emulsões/química , Óleos Voláteis/química , Óleos Voláteis/farmacocinética , Prebióticos , Adsorção , Antioxidantes/química , Antioxidantes/farmacologia , Emulsões/farmacocinética , Armazenamento de Alimentos , Inulina/química , Microscopia Eletrônica de Varredura , Óleos Voláteis/farmacologia , Oligossacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas do Soro do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA