RESUMO
The heart and brain are reciprocally interconnected and engage in two-way communication for homeostatic regulation. Epilepsy is considered a network disease that also affects the autonomic nervous system (ANS). The neurovisceral integration model (NVM) proposes that cardiac vagal tone, indexed by heart rate variability (HRV), can indicate the functional integrity of cognitive neural networks. ANS activity and the pattern of oscillatory EEG activity covary during the transition of arousal states and associations between cortical and autonomic activity are reflected by HRV. Cognitive dysfunction is one of the common comorbidities that occur in epilepsy, including memory, attention, and processing difficulties. Recent studies have shown evidence for the active involvement of alpha activity in cognitive processes through its active role in the control of neural excitability in the cortex through top-down modulation of cortical networks. In the present pilot study, we evaluated the association between resting EEG oscillatory behavior and ANS function in patients with refractory epilepsy. Our results show: (1) In patients with refractory epilepsy, there is a strong positive correlation between HRV and the power of cortical oscillatory cortical activity in all studied EEG bands (delta, theta, alpha, and beta) in all regions of interest in both hemispheres, the opposite pattern found in controls which had low or negative correlation between these variables; (2) higher heartbeat evoked potential amplitudes in patients with refractory epilepsy than in controls. Taken together, these results point to a significant alteration in heart-brain interaction in patients with refractory epilepsy.
RESUMO
Visual-spatial abilities are usually neglected in academic settings, even though several studies have shown that their predictive power in science, technology, engineering, and mathematics domains exceeds that of math and verbal ability. This neglect means that many spatially talented youths are not identified and nurtured, at a great cost to society. In the present work, we aim to identify behavioral and electrophysiological markers associated with visual spatial-ability in intellectually gifted adolescents (N = 15) compared to age-matched controls (N = 15). The participants performed a classic three-dimensional mental rotation task developed by Shepard and Metzler (1971) [33] while event-related potentials were measured in both frontal and parietal regions of interest. While response time was similar in the two groups, gifted subjects performed the test with greater accuracy. There was no indication of interhemispheric asymmetry of ERPs over parietal regions in both groups, although interhemispheric differences were observed in the frontal lobes. Moreover, intelligence quotient and working memory measures predicted variance in ERP's amplitude in the right parietal and frontal hemispheres. We conclude that while gifted adolescents do not display a different pattern of electroencephalographic activity over the parietal cortex while performing the mental rotation task, their performance is correlated with the amplitude of ERPs in the frontal cortex during the execution of this task.