Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959942

RESUMO

Edible films based on fruit and vegetable purees combined with different food-grade biopolymeric binding agents (e.g., pectin, gelatin, starch, sodium alginate) are recognized as interesting packaging materials that benefit from the physical, mechanical, and barrier properties of biopolymers as well as the sensory and nutritional properties of purees. In the current contribution, edible antioxidant films based on pear juice and pregelatinized cassava starch were developed. In particular, the suitability of using pregelatinized cassava starch for the non-thermal production of these novel edible films was evaluated. In addition, the effects on the films' properties derived from the use of pear juice instead of the complete puree, from the content of juice used, and from the carbohydrate composition associated with the ripening of pears were all studied. The produced films were characterized in terms of their total polyphenol content, water sensitivity, and water barrier, optical, mechanical and antioxidant properties. Results showed that the use of pear juice leads to films with enhanced transparency compared with puree-based films, and that juice concentration and carbohydrate composition associated with the degree of fruit ripeness strongly govern the films' properties. Furthermore, the addition of pregelatinized cassava starch at room temperature discloses a significant and favorable impact on the cohesiveness, lightness, water resistance, and adhesiveness of the pear-juice-based films, which is mainly attributed to the effective interactions established between the starch macromolecules and the juice components.

2.
Front Plant Sci ; 11: 554585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133113

RESUMO

Seaweeds biosynthesize sulfated polysaccharides as key components of their cell walls. These polysaccharides are potentially interesting as biologically active compounds. Green macroalgae of the class Ulvophyceae comprise sulfated polysaccharides with great structural differences regarding the monosaccharide constituents, linearity of their backbones, and presence of other acidic substituents in their structure, including uronic acid residues and pyruvic acid. These structures have been thoroughly studied in the Ulvales and Ulotrichales, but only more recently have they been investigated with some detail in ulvophytes with giant multinucleate (coenocytic) cells, including the siphonous Bryopsidales and Dasycladales, and the siphonocladous Cladophorales. An early classification of these structurally heterogeneous polysaccharides was based on the presence of uronic acid residues in these molecules. In agreement with this classification based on chemical structures, sulfated polysaccharides of the orders Bryopsidales and Cladophorales fall in the same group, in which this acidic component is absent, or only present in very low quantities. The cell walls of Dasycladales have been less studied, and it remains unclear if they comprise sulfated polysaccharides of both types. Although in the Bryopsidales and Cladophorales the most important sulfated polysaccharides are arabinans and galactans (or arabinogalactans), their major structures are very different. The Bryopsidales produce sulfated pyruvylated 3-linked ß-d-galactans, in most cases, with ramifications on C6. For some species, linear sulfated pyranosic ß-l-arabinans have been described. In the Cladophorales, also sulfated pyranosic ß-l-arabinans have been found, but 4-linked and highly substituted with side chains. These differences are consistent with recent molecular phylogenetic analyses, which indicate that the Bryopsidales and Cladophorales are distantly related. In addition, some of the Bryopsidales also biosynthesize other sulfated polysaccharides, i.e., sulfated mannans and sulfated rhamnans. The presence of sulfate groups as a distinctive characteristic of these biopolymers has been related to their adaptation to the marine environment. However, it has been shown that some freshwater algae from the Cladophorales also produce sulfated polysaccharides. In this review, structures of sulfated polysaccharides from bryopsidalean, dasycladalean, and cladophoralean green algae studied until now are described and analyzed based on current phylogenetic understanding, with the aim of unveiling the important knowledge gaps that still exist.

3.
Methods Mol Biol ; 1308: 313-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26108515

RESUMO

Sulfated and pyruvylated galactans are the major soluble polysaccharides produced by seaweeds of the Bryopsidales. Their backbones have a complex and variable pattern of substitution which, until now, has only been elucidated for a few species. Methods for determination of sulfate and pyruvic acid content, and chemical strategies to determine their position in the galactan chain are outlined here. These methods can also be applied to other sulfated and/or pyruvylated polysaccharides.


Assuntos
Clorófitas/química , Galactanos/química , Ácido Pirúvico/análise , Alga Marinha/química , Sulfatos/análise , Condutometria/métodos , Espectroscopia de Ressonância Magnética/métodos , Metilação , Nefelometria e Turbidimetria/métodos
4.
Carbohydr Polym ; 87(1): 916-919, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34663054

RESUMO

ß-(1→4)-d-Mannans constitute the major component of the cell wall of seaweeds of the genus Codium and replace cellulose as the major fibrillar component. They were found as major constituents of the hot water extracts of green seaweed Codium vermilara. By anion exchange chromatography of the first hot water extract, a pure sulfated mannan with a molar ratio carbohydrates:sulfate of 2.7:1 was isolated. The sulfate groups are linked to C-2 of 23% of the mannose units, while most of these units are not substituted. This degree of sulfation would explain the higher solubility of the polymer, compared to that of the non-sulfated fibrillar mannan. Taking into account that the fibrillar polysaccharides form two external layers in the cell wall, while the sulfated polymers are forming an amorphous central layer, it is postulated that these sulfated mannans could act as an interphase region between the neutral and acidic layers.

5.
Plant Physiol ; 158(1): 252-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080603

RESUMO

Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense.


Assuntos
Parede Celular/química , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Divisão Celular , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solanaceae/genética , Solanum tuberosum/citologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA