Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods ; 195: 15-22, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34048912

RESUMO

Epidemic control may be hampered when the percentage of asymptomatic cases is high. Seeking remedies for this problem, test positivity was explored between the first 60 to 90 epidemic days in six countries that reported their first COVID-19 case between February and March 2020: Argentina, Bolivia, Chile, Cuba, Mexico, and Uruguay. Test positivity (TP) is the percentage of test-positive individuals reported on a given day out of all individuals tested the same day. To generate both country-specific and multi-country information, this study was implemented in two stages. First, the epidemiologic data of the country infected last (Uruguay) were analyzed. If at least one TP-related analysis yielded a statistically significant relationship, later assessments would investigate the six countries. The Uruguayan data indicated (i) a positive correlation between daily TP and daily new cases (r = 0.75); (ii) a negative correlation between TP and the number of tests conducted per million inhabitants (TPMI, r = -0.66); and (iii) three temporal stages, which differed from one another in both TP and TPMI medians (p < 0.01) and, together, revealed a negative relationship between TPMI and TP. No significant relationship was found between TP and the number of active or recovered patients. The six countries showed a positive correlation between TP and the number of deaths/million inhabitants (DMI, r = 0.65, p < 0.01). With one exception -a country where isolation was not pursued-, all countries showed a negative correlation between TP and TPMI (r = 0.74). The temporal analysis of country-specific policies revealed four patterns, characterized by: (1) low TPMI and high DMI, (2) high TPMI and low DMI; (3) an intermediate pattern, and (4) high TPMI and high DMI. Findings support the hypothesis that test positivity may guide epidemiologic policy-making, provided that policy-related factors are considered and high-resolution geographical data are utilized.


Assuntos
Infecções Assintomáticas/epidemiologia , Teste para COVID-19/métodos , Teste para COVID-19/normas , COVID-19/diagnóstico , COVID-19/epidemiologia , Argentina/epidemiologia , Bolívia/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19/tendências , Chile/epidemiologia , Cuba/epidemiologia , Epidemias/prevenção & controle , Humanos , México/epidemiologia , Mortalidade/tendências , Uruguai/epidemiologia
2.
Methods ; 195: 72-76, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33744396

RESUMO

The test positivity (TP) rate has emerged as an important metric for gauging the illness burden due to COVID-19. Given the importance of COVID-19 TP rates for understanding COVID-related morbidity, researchers and clinicians have become increasingly interested in comparing TP rates across countries. The statistical methods for performing such comparisons fall into two general categories: frequentist tests and Bayesian methods. Using data from Our World in Data (ourworldindata.org), we performed comparisons for two prototypical yet disparate pairs of countries: Bolivia versus the United States (large vs. small-to-moderate TP rates), and South Korea vs. Uruguay (two very small TP rates of similar magnitude). Three different statistical procedures were used: two frequentist tests (an asymptotic z-test and the 'N-1' chi-square test), and a Bayesian method for comparing two proportions (TP rates are proportions). Results indicated that for the case of large vs. small-to-moderate TP rates (Bolivia versus the United States), the frequentist and Bayesian approaches both indicated that the two rates were substantially different. When the TP rates were very small and of similar magnitude (values of 0.009 and 0.007 for South Korea and Uruguay, respectively), the frequentist tests indicated a highly significant contrast, despite the apparent trivial amount by which the two rates differ. The Bayesian method, in comparison, suggested that the TP rates were practically equivalent-a finding that seems more consistent with the observed data. When TP rates are highly similar in magnitude, frequentist tests can lead to erroneous interpretations. A Bayesian approach, on the other hand, can help ensure more accurate inferences and thereby avoid potential decision errors that could lead to costly public health and policy-related consequences.


Assuntos
Teste para COVID-19/estatística & dados numéricos , Teste para COVID-19/tendências , COVID-19/epidemiologia , Interpretação Estatística de Dados , Projetos de Pesquisa/estatística & dados numéricos , Projetos de Pesquisa/tendências , Teorema de Bayes , Bolívia/epidemiologia , COVID-19/diagnóstico , Humanos , República da Coreia/epidemiologia , Estados Unidos/epidemiologia , Uruguai/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA