Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Am J Vet Res ; 85(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984890

RESUMO

OBJECTIVE: To cohouse cats experimentally infected with Bartonella clarridgeiae (Bc) with naive cats in a flea-free environment or with Ctenocephalides felis, Bartonella henselae (Bh), Mycoplasma haemofelis, and Candidatus Mycoplasma haemominutum to determine which flea could be a vector and to assess whether transmission of the infectious agents could be blocked by fipronil and (S)-methoprene. ANIMALS: Specific pathogen-free cats (n = 34). METHODS: In experiment 1, Bc was inoculated in 1 cat that was housed with 9 naive cats without C felis. In experiment 2, the 2 cats inoculated with Bc were housed with 6 other cats (2 inoculated with Bh, 2 inoculated with M haemofelis, and 2 inoculated with Candidatus M haemominutum) in the center (enclosure 2) of 3 housing enclosures separated by mesh walls that allow passage of fleas but precludes fighting. C felis were placed only on cats in enclosure 2 (5 times). Cats in enclosures 1 (n = 8) and 2 (8) were untreated, and cats in enclosure 3 (8) were administered fipronil and (S)-methoprene. Blood was collected from all cats for PCR assays for the pathogens. RESULTS: None of the cats housed with the cat inoculated with Bc became PCR positive in the absence of C felis. All cats in enclosure 2 became Bc DNA positive. While 2 of 8 cats in enclosure 1 became Bc PCR positive, none of the treated cats in enclosure 3 became infected. CLINICAL RELEVANCE: The study demonstrated that C felis can be a vector for Bc. The results support the recommendation that flea control products can reduce the risk of transmission of flea-borne pathogens.


Assuntos
Infecções por Bartonella , Bartonella , Doenças do Gato , Ctenocephalides , Metoprene , Pirazóis , Animais , Gatos , Doenças do Gato/transmissão , Doenças do Gato/microbiologia , Doenças do Gato/prevenção & controle , Ctenocephalides/microbiologia , Ctenocephalides/efeitos dos fármacos , Pirazóis/farmacologia , Metoprene/farmacologia , Infecções por Bartonella/transmissão , Infecções por Bartonella/veterinária , Infecções por Bartonella/prevenção & controle , Infestações por Pulgas/veterinária , Infestações por Pulgas/transmissão , Infestações por Pulgas/prevenção & controle , Inseticidas/farmacologia , Feminino , Masculino , Organismos Livres de Patógenos Específicos , Mycoplasma , Insetos Vetores/microbiologia
2.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837946

RESUMO

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Cromossomos de Plantas , Genômica/métodos , Malvaceae/genética
3.
Small ; : e2400351, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874126

RESUMO

Schwarzites are porous (spongy-like) carbon allotropes with negative Gaussian curvatures. They are proposed by Mackay and Terrones inspired by the works of the German mathematician Hermann Schwarz on Triply-Periodic Minimal Surfaces (TPMS). This review presents and discusses the history of schwarzites and their place among curved carbon nanomaterials. The main works on schwarzites are summarized and are available in the literature. Their unique structural, electronic, thermal, and mechanical properties are discussed. Although the synthesis of carbon-based schwarzites remains elusive, recent advances in the synthesis of zeolite-templates nanomaterials have brought them closer to reality. Atomic-based models of schwarzites are translated into macroscale ones that are 3D-printed. These 3D-printed models are exploited in many real-world applications, including water remediation and biomedical ones.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38706297

RESUMO

The global emphasis on sustainable technologies has become a paramount concern for nations worldwide. Specifically, numerous sustainable methods are being explored as promising alternatives to the well-established vapor-compression technologies in cooling and heating devices. One such avenue gaining traction within the scientific community is the elastocaloric (eC) effect. This phenomenon holds promise for efficient cooling and heating processes without causing environmental harm. Studies carried out at the nanoscale have demonstrated the efficiency of the eC effect, proving to be comparable to that of state-of-the-art macroscopic systems. In this study, we used classical molecular dynamics simulations to investigate the elastocaloric effect for the recently synthesized γ-graphyne. Our analysis goes beyond obtaining changes in eC temperature and the coefficient of performance (COP) for two species of γ-graphyne nanoribbons (armchair and zigzag). We also explore their dependence on various conditions, including whether they are deposited on a substrate or prestrained. Our findings reveal a substantial enhancement in the elastocaloric effect for γ-graphyne nanoribbons when subjected to prestrain, amplifying it by at least 1 order of magnitude. Under certain conditions, the changes in the eC temperature and the COP of the structures reach expressive values as high as 224 K and 14, respectively. We discuss the implications of these results by examining the shape and behavior of the carbon-carbon bond lengths within the structures.

5.
J Clin Sleep Med ; 20(9): 1467-1477, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652499

RESUMO

STUDY OBJECTIVES: Low-sodium oxybate (LXB; calcium, magnesium, potassium, and sodium oxybates; Xywav) contains the same active moiety as high-sodium oxybates (SXBs; SXB [Xyrem] and fixed-dose SXB [Lumryz]), with 92% less sodium, and is approved in the United States for treatment of cataplexy or excessive daytime sleepiness in patients 7 years of age and older with narcolepsy, and idiopathic hypersomnia in adults. Patients with narcolepsy have increased cardiovascular risk relative to people without narcolepsy. LXB's lower sodium content is recognized by the United States Food and Drug Administration in the narcolepsy population as clinically meaningful in reducing cardiovascular morbidity compared with SXBs. The Substitution of Equal Grams of Uninterrupted Xyrem to Xywav study (NCT04794491) examined the transition experience of patients with narcolepsy switching from SXB to LXB. METHODS: Eligible participants were aged 18-80 years with narcolepsy type 1 or 2 on a stable SXB dose/regimen. After 2 weeks, participants transitioned gram-per-gram to LXB for 6 weeks, with opportunity for subsequent titration. Assessments included the Epworth Sleepiness Scale, Patient Global Impression of change, Ease of Switching Medication Scale, and Forced Preference Questionnaire. RESULTS: The study enrolled 62 participants at baseline; 60 transitioned to LXB and 54 completed the study. At baseline and end of the LXB intervention/early discontinuation, respectively, mean total doses were 8.0 and 8.0 g/night; mean Epworth Sleepiness Scale scores were 9.4 and 8.8. Most participants reported improvement (45%) or no change (48%) in narcolepsy symptoms on the Patient Global Impression of change, reported the transition to LXB was "easy" (easy, extremely easy, not difficult at all; 93%) on the Ease of Switching Medication Scale, and preferred LXB compared with SXB (79%) on the Forced Preference Questionnaire, most commonly due to the lower sodium content. CONCLUSIONS: Most participants switched from SXB to LXB with minimal modifications of dose/regimen and reported the transition process was easy. Effectiveness of oxybate treatment was maintained on LXB, and most participants preferred LXB to SXB. No new safety or tolerability issues were identified. CLINICAL TRIAL REGISTRATION: Registry: ClinicalTrials.gov; Name: An Interventional Safety Switch Study (Segue Study) of XYWAV in Narcolepsy; URL: https://classic.clinicaltrials.gov/ct2/show/NCT04794491; Identifier: NCT04794491. CITATION: Macfadden W, Leary EB, Fuller DS, Kirby MT, Roy A. Effectiveness and optimization of low-sodium oxybate in participants with narcolepsy switching from a high-sodium oxybate: data from the Substitution of Equal Grams of Uninterrupted Xyrem to Xywav study. J Clin Sleep Med. 2024;20(9):1467-1477.


Assuntos
Narcolepsia , Oxibato de Sódio , Humanos , Narcolepsia/tratamento farmacológico , Oxibato de Sódio/uso terapêutico , Oxibato de Sódio/administração & dosagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Adolescente , Substituição de Medicamentos/métodos , Adulto Jovem , Idoso , Relação Dose-Resposta a Droga
6.
Phys Chem Chem Phys ; 26(15): 11589-11596, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38533829

RESUMO

In this work, we proposed and investigated the structural and electronic properties of boron-based nanoscrolls (armchair and zigzag) using the DFTB+ method. We also investigated the electroactuation process (injecting and removing charges). A giant electroactuation was observed, but the results show relevant differences between the borophene and carbon nanoscrolls. The molecular dynamics simulations showed that the scrolls are thermally and structurally stable for a large range of temperatures (up to 600 K), and the electroactuation process can be easily tuned and can be entirely reversible for some configurations.

7.
Hypertension ; 81(4): 776-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240165

RESUMO

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Assuntos
Aldosterona , Quimiocina CCL5 , Hipertensão , Receptores CCR5 , Animais , Camundongos , Aldosterona/farmacologia , Células Endoteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamação , Receptores CCR5/genética , Receptores CCR5/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
8.
Eur J Phys Rehabil Med ; 59(6): 754-762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847246

RESUMO

BACKGROUND: Fibromyalgia is a syndrome characterized by generalized chronic pain and tenderness in specific areas. Photobiomodulation therapy (PBMT) using low-level laser therapy and/or light emitting diode therapy is an electrophysical agent that can be used alone or together with a static magnetic field (PBMT-sMF) to promote analgesia in several health conditions. Little evidence exists regarding the effects of using PBMT and PBMT-sMF in patients with fibromyalgia; this evidence is conflicting. AIM: We aimed to investigate the effects of using PBMT-sMF versus a placebo on reduction of the degree-of-pain rating, impact of fibromyalgia, pain intensity, and satisfaction with treatment in patients with fibromyalgia. DESIGN: A prospectively registered, monocentric, randomized placebo-controlled trial, with blinding of patients, therapists, and assessors, was performed. SETTING: The study was conducted at the Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT) in Brazil, between March and October 2020. POPULATION: Ninety female patients with fibromyalgia were randomized to undergo either PBMT-sMF (N.=45) or placebo (N.=45) treatment. METHODS: Patients from both groups received nine treatment sessions, three times a week, for 3 weeks. Clinical outcomes were collected at baseline, the end of treatment, and at the follow-up appointment 4 weeks post-treatment. The primary outcome was the degree-of-pain rating, measured by the reduction of the tender point count. RESULTS: A decrease in the degree-of-pain rating was observed in patients allocated to the PBMT-sMF group, decreasing the number of tender points when compared to placebo group at the end of treatment (P<0.0001) and at the follow-up assessment (P<0.0001). Patients did not report any adverse events. CONCLUSIONS: PBMT-sMF is superior to placebo, supporting its use in patients with fibromyalgia. CLINICAL REHABILITATION IMPACT: PBMT-sMF might be considered an important adjuvant to the treatment regimens of patients with fibromyalgia.


Assuntos
Dor Crônica , Fibromialgia , Terapia com Luz de Baixa Intensidade , Humanos , Feminino , Fibromialgia/radioterapia , Protocolos Clínicos , Campos Magnéticos
9.
Phys Chem Chem Phys ; 25(18): 13088-13093, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115202

RESUMO

The advent of graphene has renewed the interest in other 2D carbon-based materials. In particular, new structures have been proposed by combining hexagonal and other carbon rings in different ways. Recently, Bhattacharya and Jana have proposed a new carbon allotrope, composed of different polygonal carbon rings containing 4, 5, 6, and 10 atoms, named tetra-penta-deca-hexagonal-graphene (TPDH-graphene). This unusual topology results in interesting mechanical, electronic, and optical properties with several potential applications, including UV protection. Like other 2D carbon structures, chemical functionalizations can be used to tune TPDH-graphene's physical/chemical properties. In this work, we investigate the hydrogenation dynamics of TPDH-graphene and its effects on its electronic structure, combining DFT and fully atomistic reactive molecular dynamics simulations. Our results show that H atoms are mainly incorporated on tetragonal ring sites (up to 80% at 300 K), leading to the appearance of well-delimited pentagonal carbon stripes. The electronic structure of the hydrogenated structures shows the formation of narrow bandgaps with the presence of Dirac cone-like structures, indicative of anisotropic transport properties.

10.
Gene ; 849: 146904, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150535

RESUMO

Unlike the chloroplast genomes (ptDNA), the plant mitochondrial genomes (mtDNA) are much more plastic in structure and size but maintain a conserved and essential gene set related to oxidative phosphorylation. Moreover, the plant mitochondrial genes and mtDNA are good markers for phylogenetic, evolutive, and comparative analyses. The two most known species in Theobroma L. (Malvaceae s.l.) genus are T. cacao, and T. grandiflorum. Besides the economic value, both species also show considerable biotechnology potential due to their other derived products, thus, aggregating additional economic value for the agroindustry. Here, we assembled and compared the mtDNA of Theobroma cacao and T. grandiflorum to generate a new genomics resource and unravel evolutionary trends. Graph-based analyses revealed that both mtDNA exhibit multiple alternative arrangements, confirming the dynamism commonly observed in plant mtDNA. The disentangled assembly graph revealed potential predominant circular molecules. The master circle molecules span 543,794 bp for T. cacao and 501,598 bp for T. grandiflorum, showing 98.9% of average sequence identity. Both mtDNA contains the same set of 39 plant mitochondrial genes, commonly found in other rosid mitogenomes. The main features are a duplicated copy of atp4, the absence of rpl6, rps2, rps8, and rps11, and the presence of two chimeric open-reading frames. Moreover, we detected few ptDNA integrations mainly represented by tRNAs, and no viral sequences were detected. Phylogenomics analyses indicate Theobroma spp. are nested in Malvaceae family. The main mtDNA differences are related to distinct structural rearrangements and exclusive regions associated with relics of Transposable Elements, supporting the hypothesis of dynamic mitochondrial genome maintenance and divergent evolutionary paths and pressures after species differentiation.


Assuntos
Cacau , Genoma Mitocondrial , Cacau/genética , Genoma Mitocondrial/genética , Filogenia , Elementos de DNA Transponíveis , Plásticos , DNA Mitocondrial
11.
Comput Struct Biotechnol J ; 21: 86-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36514333

RESUMO

Analysis of differential gene expression from RNA-seq data has become a standard for several research areas. The steps for the computational analysis include many data types and file formats, and a wide variety of computational tools that can be applied alone or together as pipelines. This paper presents a review of the differential expression analysis pipeline, addressing its steps and the respective objectives, the principal methods available in each step, and their properties, therefore introducing an organized overview to this context. This review aims to address mainly the aspects involved in the differentially expressed gene (DEG) analysis from RNA sequencing data (RNA-seq), considering the computational methods. In addition, a timeline of the computational methods for DEG is shown and discussed, and the relationships existing between the most important computational tools are presented by an interaction network. A discussion on the challenges and gaps in DEG analysis is also highlighted in this review. This paper will serve as a tutorial for new entrants into the field and help established users update their analysis pipelines.

12.
Plants (Basel) ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501303

RESUMO

Petiveria alliacea L. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of P. alliacea on Saccharomyces cerevisiae strains. S. cerevisiae FF18733 (wild type) and CD138 (ogg1) strains were exposed to fractioned ethanolic extracts of P. alliacea in different concentrations. Three experimental assays were performed: cellular inactivation, mutagenesis (canavanine resistance system) and loss of mitochondrial function (petites colonies). The chemical analyses revealed a rich extract with phenolic compounds such as protocatechuic acid, cinnamic and catechin epicatechin. A decreased cell viability in wild-type and ogg1 strains was demonstrated. All fractions of the extract exerted a mutagenic effect on the ogg1 strain. Only ethyl acetate and n-butanol fractions increased the rate of petites colonies in the ogg1 strain, but not in the wild-type strain. The results indicate that fractions of mid-polarity of the ethanolic extract, at the studied concentrations, can induce mutagenicity mediated by oxidative lesions in the mitochondrial and genomic genomes of the ogg1-deficient S. cerevisiae strain. These findings indicate that the lesions caused by the fractions of P. alliacea ethanolic extract can be mediated by reactive oxygen species and can reach multiple molecular targets to exert their toxicity.

14.
Front Mol Biosci ; 9: 936107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052162

RESUMO

Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.

15.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142365

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the severe pandemic of acute respiratory disease, coronavirus disease 2019 (COVID-19), experienced in the 21st century. The clinical manifestations range from mild symptoms to abnormal blood coagulation and severe respiratory failure. In severe cases, COVID-19 manifests as a thromboinflammatory disease. Damage to the vascular compartment caused by SARS-CoV-2 has been linked to thrombosis, triggered by an enhanced immune response. The molecular mechanisms underlying endothelial activation have not been fully elucidated. We aimed to identify the proteins correlated to the molecular response of human umbilical vein endothelial cells (HUVECs) after exposure to SARS-CoV-2, which might help to unravel the molecular mechanisms of endothelium activation in COVID-19. In this direction, we exposed HUVECs to SARS-CoV-2 and analyzed the expression of specific cellular receptors, and changes in the proteome of HUVECs at different time points. We identified that HUVECs exhibit non-productive infection without cytopathic effects, in addition to the lack of expression of specific cell receptors known to be essential for SARS-CoV-2 entry into cells. We highlighted the enrichment of the protein SUMOylation pathway and the increase in SUMO2, which was confirmed by orthogonal assays. In conclusion, proteomic analysis revealed that the exposure to SARS-CoV-2 induced oxidative stress and changes in protein abundance and pathways enrichment that resembled endothelial dysfunction.


Assuntos
Fenômenos Biológicos , COVID-19 , Células Endoteliais , Humanos , Proteoma , Proteômica , SARS-CoV-2
17.
Plants (Basel) ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890514

RESUMO

Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.

18.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696423

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Sistema Nervoso Central , Vírus da Encefalite Equina Venezuelana/genética , Cavalos/genética , Inflamação , Macaca fascicularis , RNA Viral/genética
19.
Phys Chem Chem Phys ; 24(22): 13905-13910, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621060

RESUMO

The concept of a diode is usually applied to electronic and thermal devices but very rarely for mechanical ones. A recently proposed fracture rectification effect in polymer-based structures with triangular void defects has motivated us to test these ideas at the nanoscale using graphene membranes. Using fully-atomistic reactive molecular dynamics simulations we showed that robust rectification-like effects exist. The fracture can be 'guided' to more easily propagate along one specific direction than its opposite. We also observed that there is an optimal value for the spacing between each void for the rectification effect.

20.
Methods Mol Biol ; 2469: 43-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508828

RESUMO

Terpenoids are a class of compounds that are found in all living organisms. In plants, some terpenoids are part of primary metabolism, but most terpenes found in plants are classified as specialized metabolites, encoded by terpene synthases (TPS). It is not obvious how to assign the putative product of a given TPS using bioinformatics tools. Phylogenetic analyses easily assign TPS into families; however members of the same TPS family can synthetize more than one terpenoid-and, in many biotechnological applications, researchers are more interested in the product of a given TPS rather than its phylogenetic profile. Automated protein annotation can be used to classify TPS based on their products, despite the family they belong to. Here, we implement an automated bioinformatics method, search_TPS, to identify TPS proteins that synthesize mono, sesqui and diterpenes in Angiosperms. We verified the applicability of the method by classifying wet lab validated TPS and applying it to find TPS proteins in Coffea arabica, C. canephora, C. eugenioides, and Quillaja saponaria. Search_TPS is a computational tool based on PERL scripts that carries out a series of HMMER searches against a curated database of TPS profile hidden Markov models. The tool is freely available at https://github.com/liliane-sntn/TPS .


Assuntos
Alquil e Aril Transferases , Coffea , Alquil e Aril Transferases/genética , Coffea/metabolismo , Biologia Computacional , Humanos , Filogenia , Quillaja , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA