RESUMO
The most important parameter in bioprocesses is biomass, where not only the quantity produced in a culture but also the behavior that is presented are important concerns. It is clear that conditions of operation in a bioreactor affect biomass production, but how operation conditions affect the measurement of biomass on-line is of special interest. We studied the effect of bioreactor operating condition variations on model parameters using impedance spectroscopy for biomass monitoring. The model parameters analyzed were capacitance, resistance, alpha (α), conductivity delta (∆σ) and critical frequency (fc). These model parameters were obtained by fitting data from impedance measurements to an equivalent circuit model and Cole-Cole conductivity model. The effect of operating conditions on the medium with no cells was estimated by the percentage of change in each model parameter. The operating conditions with the most significant percentage of change were determined, by comparing to the percentage of change of the same model parameters obtained, during a fermentation of Bacillus thuringiensis as a cellular model. Equivalent circuit parameters were mainly affected by variation in pH, temperature and aeration, whereas Cole-Cole parameters were affected by variation in agitation, aeration, temperature and pH. Therefore, any variation in these operating conditions (within the test interval) during a fermentation may generate changes in monitoring parameters, which will not be a direct consequence of any change in the properties of the biomass.
Assuntos
Biomassa , Reatores Biológicos , Espectroscopia DielétricaRESUMO
The transition state regulator AbrB is involved in the regulation of various cellular functions such as exponential growth, transition state and sporulation onset, due to its ability to activate, suppress or prevent the inappropriate expression of various genes in Bacillus subtilis. In order to understand combined behavior in batch cultures of AbrB in Bacillus thuringiensis, we cloned and expressed the abrB gene of B. thuringiensis in Escherichia coli. The deduced sequence of abrB gene coded for a protein consisting of 94 amino acids with ~10.5 kDa protein that shares 100 and 85 % identity with those from Bacillus cereus and Bacillus subtilis. The recombinant AbrB protein was used as antigen for the production of rabbit polyclonal antibodies anti-AbrB. Two media cultures with carbon: nitrogen ratios of 7.0, but varying access to nutrients were tested in batch cultures. In the case of both media, AbrB accumulation occurred from the beginning of the process and was maximal during early exponential growth. Thereafter, the level of AbrB decreased when there were no nutrient limitations and coincided with a decreased value in specific growth rate, although growth continued exponentially. Nonetheless, sporulation onset was determined 3 h and 4 h later, in media with highly metabolizable nutrients clean medium and Farrera medium, respectively. Hence, the maximal level of AbrB accumulation in batch cultures of B. thuringiensis is not influenced by limiting nutrients; however, nutrient availability affects the required time lapse for transition state regulator accumulation.