RESUMO
BACKGROUND: Continuous measurement of urinary PO2 (PuO2) is being applied to indirectly monitor renal medullary PO2. However, when applied to critically ill patients with shock, its measurement may be affected by changes in FiO2 and PaO2 and potential associated O2 diffusion between urine and ureteric or bladder tissue. We aimed to investigate PuO2 measurements in septic shock patients with a fiberoptic luminescence optode inserted into the urinary catheter lumen in relation to episodes of FiO2 change. We also evaluated medullary and urinary oxygen tension values in Merino ewes at two different FiO2 levels. RESULTS: In 10 human patients, there were 32 FiO2 decreases and 31 increases in FiO2. Median pre-decrease FiO2 was 0.36 [0.30, 0.39] and median post-decrease FiO2 was 0.30 [0.23, 0.30], p = 0.006. PaO2 levels decreased from 83 mmHg [77, 94] to 72 [62, 80] mmHg, p = 0.009. However, PuO2 was 23.2 mmHg [20.5, 29.0] before and 24.2 mmHg [20.6, 26.3] after the intervention (p = 0.56). The median pre-increase FiO2 was 0.30 [0.21, 0.30] and median post-increase FiO2 was 0.35 [0.30, 0.40], p = 0.008. PaO2 levels increased from 64 mmHg [58, 72 mmHg] to 71 mmHg [70, 100], p = 0.04. However, PuO2 was 25.0 mmHg [IQR: 20.7, 26.8] before and 24.3 mmHg [IQR: 20.7, 26.3] after the intervention (p = 0.65). A mixed linear regression model showed a weak correlation between the variation in PaO2 and the variation in PuO2 values. In 9 Merino ewes, when comparing oxygen tension levels between FiO2 of 0.21 and 0.40, medullary values did not differ (25.1 ± 13.4 mmHg vs. 27.9 ± 15.4 mmHg, respectively, p = 0.6766) and this was similar to urinary oxygen values (27.1 ± 6.17 mmHg vs. 29.7 ± 4.41 mmHg, respectively, p = 0.3192). CONCLUSIONS: Changes in FiO2 and PaO2 within the context of usual care did not affect PuO2. Our findings were supported by experimental data and suggest that PuO2 can be used as biomarker of medullary oxygenation irrespective of FiO2.
RESUMO
OBJECTIVE: The authors aimed to test whether a bolus of magnesium followed by continuous intravenous infusion might prevent the development of atrial fibrillation (AF) after cardiac surgery. DESIGN: Sequential, matched, case-controlled pilot study. SETTING: Tertiary university hospital. PARTICIPANTS: Matched cohort of 99 patients before and intervention cohort of 99 consecutive patients after the introduction of a continuous magnesium infusion protocol. INTERVENTIONS: The magnesium infusion protocol consisted of a 10 mmol loading dose of magnesium sulphate followed by a continuous infusion of 3 mmol/h over a maximum duration of 96 hours or until intensive care unit discharge. MEASUREMENTS AND MAIN RESULTS: The study groups were balanced except for a lower cardiac index in the intervention cohort. The mean duration of magnesium infusion was 27.93 hours (95% confidence interval [CI]: 24.10-31.76 hours). The intervention group had greater serum peak magnesium levels: 1.72 mmol/L ± 0.34 on day 1, 1.32 ± 0.36 on day 2 versus 1.01 ± 1.14 and 0.97 ± 0.13, respectively, in the control group (p < 0.01). Atrial fibrillation occurred in 25 patients (25.3%) in the intervention group and 40 patients (40.4%) in the control group (odds ratio 0.49, 95% CI, 0.27-0.92; p = 0.023). On a multivariate Cox proportional hazards model, the hazard ratio for the development of AF was significantly less in the intervention group (hazard ratio 0.45, 95% CI, 0.26-0.77; p = 0.004). CONCLUSION: The magnesium delivery strategy was associated with a decreased incidence of postoperative AF in cardiac surgery patients. These findings provide a rationale and preliminary data for the design of future randomized controlled trials.