Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 220: 121417, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928428

RESUMO

A new protocol for the analysis of the azo-dye carmoisine (CMS) is presented by coupling differential pulse voltammetry (DPV) with a cathodically pretreated boron-doped diamond electrode (CPT-BDDE), in phosphate buffer solution (pH 2.0). The CMS presented diffusion-controlled oxidation and reduction peaks at +0.88 and -0.15 V vs Ag/AgCl, respectively. The effect of the pretreatment conditions, pH, and supporting electrolytes were evaluated to the voltammetric determination of CMS. Under optimized conditions, the differential pulse voltammetric signals for CMS were linear over the concentration range of 0.059-1.31 µmol L-1 and 0.010-0.079 µmol L-1 with limits of detection of 7.0 and 3.0 nmol L-1, for the anodic and cathodic processes respectively. The method was precise for CMS determination (RSD < 5.0%) and selective against other dyes. The developed protocol was successfully applied in the analysis of CMS in surface water and foodstuffs with accurate results in comparison with those obtained using a validated spectrophotometric method.


Assuntos
Boro , Diamante , Compostos Azo , Eletrodos , Naftalenossulfonatos
2.
Bioelectrochemistry ; 135: 107543, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32450282

RESUMO

Laccase from Botryosphaeria rhodina MAMB-05 was covalently immobilized on carboxymethyl-botryosphaeran by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) in aqueous solution. This approach was employed to fabricate a novel laccase-based biosensor to electrochemically quantify quercetin (QCT), using a simple carbon black paste electrode as a transducer. The proposed biosensor was characterized by electrochemical impedance spectroscopy and Nyquist plots were used to evaluate the immobilization of the enzyme. For determining QCT, variables were optimized, that included experimental conditions for laccase immobilization, pH of the supporting electrolyte, and instrumental parameters of the electroanalytical technique. From square-wave-voltammograms, a linear dependence between the cathodic current peak and QCT concentration was observed within the range 4.98-50.0 × 10-8 mol L-1, with a theoretical detection limit of 2.6 × 10-8 mol L-1. The proposed method was successfully applied to determine QCT in beverages, pharmaceuticals, and biological samples. The proposed biosensor device presented good selectivity in the presence of uric acid, various inorganic ions, as well as other phenolic compounds, demonstrating the potential application of this biosensing platform in chemically complex solutions. Operational and analytical stability of the laccase-biosensor were evaluated, and good intra-day (SD = 1.23%) and inter-day (SD = 2.32%) repeatability, and long storage stability (SD = 3.47%) are presented.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Glucanos/química , Lacase/química , Quercetina/análise , Limite de Detecção , Soluções , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA