Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280709

RESUMO

The development of flexible and porous materials to control antibacterial delivery is a pivotal endeavor in medical science. In this study, we aimed to produce long and defect-free fibers made of zein and hydroxypropyl methylcellulose acetate succinate (HPMCAS) to be used as a platform for the release of metronidazole (MDZ) and metronidazole benzoate (BMDZ) to be potentially used in periodontal treatment. Microfibers prepared via electrospinning under a 2:3 (w/w) zein to HPMCAS ratio, containing 0.5 % (w/w) poly(ethylene oxide) (PEO) and 1 % (w/w) cellulose nanofibril (CNF) were loaded with 40 % (w/w) MDZ, 40 % (w/w) BMDZ, or a combination of 20 % (w/w) of each drug. The addition of CNF improved the electrospinning process, resulting in long fibers with reduced MDZ and BMDZ surface crystallization. MDZ- and BMDZ-incorporated fibers were semicrystalline and displayed commendable compatibility among drugs, nanocellulose and polymeric chains. Release tests showed that zein/HPMCAS/PEO fibers without CNF and with 20 % (w/w) MDZ/ 20 % (w/w) BMDZ released the drug at a slower and more sustained rate compared to other samples over extended periods (up to 5 days), which is a favorable aspect concerning periodontitis treatment.


Assuntos
Metilcelulose/análogos & derivados , Metronidazol , Zeína , Metronidazol/farmacologia , Celulose , Benzoatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA