RESUMO
Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs). We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.
RESUMO
UNLABELLED: This article presents an exploratory factor analytic approach to morphometry in which a high-dimensional set of shape-related variables is examined with the purpose of finding clusters with strong correlation. This clustering can potentially identify regions that have anatomic significance and thus lend insight to knowledge discovery and morphometric investigations. METHODS: The information about regional shape is extracted by registering a reference image to a set of test images. Based on the displacement fields obtained form image registration, the amount of pointwise volume enlargement or reduction is computed and statistically analyzed with the purpose of extracting a reduced set of common factors. EXPERIMENTS: The effectiveness and robustness of the method is demonstrated in a study of gender-related differences of the human corpus callosum anatomy, based on a sample of 84 right-handed normal controls. RESULTS: The method is able to automatically partition the structure into regions of interest, in which the most relevant shape differences can be observed. The confidence of results is evaluated by analyzing the statistical fit of the model and compared to previous experimental works.