Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Photochem Photobiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049138

RESUMO

Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.

2.
Sci Rep ; 14(1): 602, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182697

RESUMO

While plant microorganisms can promote plants by producing natural antibiotics, they can also be vectors for disease transmission. Contamination from plant management practices and the surrounding environment can adversely affect plants, leading to infections and hindered growth due to microbial competition for nutrients. The recirculation of nutrient-rich fluids can facilitate the transport of microorganisms between vegetables in the hydroponic production system. This issue can be addressed through the application of the decontamination method in the hydroponic liquid. Ultraviolet light (UV-C) has been employed for microbiology, and its effects on lettuce were evaluated in this study. This study aims to assess the effectiveness of a decontamination system using UV-C in hydroponic solutions during nutrient recirculation in hydroponics. We evaluated the time required for lettuce plants to reach their maximum height, as well as their pigment content, phenolic compounds, antioxidant capacity, and micro and macronutrient levels. The evaluation was conducted under two photoperiods (18 and 20 hours) in lettuce samples exposed to UV-C in the hydroponic fluid, with control groups not exposed to UV-C. The application of the UV-C decontamination system in hydroponic circulation water containing nutrients accelerated plant growth while maintaining nutritional values equal to or higher than those in the control groups without such a system. The results of microorganism control highlight the potential application of this technique for enhancing and expediting vegetable production. This approach reduces production time and enhances nutrient absorption and the content of certain compounds and minerals.


Assuntos
Descontaminação , Verduras , Hidroponia , Antibacterianos , Antioxidantes , Lactuca
3.
Proc Natl Acad Sci U S A ; 120(39): e2311667120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729197

RESUMO

Multidrug-resistant bacteria are one of the most serious threats to infection control. Few new antibiotics have been developed; however, the lack of an effective new mechanism of their action has worsened the situation. Photodynamic inactivation (PDI) can break antimicrobial resistance, since it potentiates the effect of antibiotics, and induces oxidative stress in microorganisms through the interaction of light with a photosensitizer. This paper addresses the application of PDI for increasing bacterial susceptibility to antibiotics and helping in bacterial persistence and virulence. The effect of photodynamic action on resistant bacteria collected from patients and bacteria cells with induced resistance in the laboratory was investigated. Staphylococcus aureus resistance breakdown levels for each antibiotic (amoxicillin, erythromycin, and gentamicin) from the photodynamic effect (10 µM curcumin, 10 J/cm2) and its maintenance in descendant microorganisms were demonstrated within five cycles after PDI application. PDI showed an innovative feature for modifying the degree of bacterial sensitivity to antibiotics according to dosages, thus reducing resistance and persistence of microorganisms from standard and clinical strains. We hypothesize a reduction in the degree of antimicrobial resistance through photooxidative action combats antibiotic failures.


Assuntos
Amoxicilina , Antibacterianos , Humanos , Antibacterianos/farmacologia , Eritromicina , Gentamicinas/farmacologia , Bactérias
4.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430697

RESUMO

Transparent Conductive Oxides (TCOs) have been widely used as sensors for various hazardous gases. Among the most studied TCOs is SnO2, due to tin being an abundant material in nature, and therefore being accessible for moldable-like nanobelts. Sensors based on SnO2 nanobelts are generally quantified according to the interaction of the atmosphere with its surface, changing its conductance. The present study reports on the fabrication of a nanobelt-based SnO2 gas sensor, in which electrical contacts to nanobelts are self-assembled, and thus the sensors do not need any expensive and complicated fabrication processes. The nanobelts were grown using the vapor-solid-liquid (VLS) growth mechanism with gold as the catalytic site. The electrical contacts were defined using testing probes, thus the device is considered ready after the growth process. The sensorial characteristics of the devices were tested for the detection of CO and CO2 gases at temperatures from 25 to 75 °C, with and without palladium nanoparticle deposition in a wide concentration range of 40-1360 ppm. The results showed an improvement in the relative response, response time, and recovery, both with increasing temperature and with surface decoration using Pd nanoparticles. These features make this class of sensors important candidates for CO and CO2 detection for human health.

5.
Sci Rep ; 12(1): 21146, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476814

RESUMO

Antibiotic failures in treatments of bacterial infections from resistant strains have been a global health concern, mainly due to the proportions they can reach in the coming years. Making microorganisms susceptible to existing antibiotics is an alternative to solve this problem. This study applies a physicochemical method to the standard treatment for modulating the synergistic response towards circumventing the mechanisms of bacterial resistance. Photodynamic inactivation protocols (curcumina 10 µM, 10 J/cm2) and their cellular behavior in the presence of amoxicillin, erythromycin, and gentamicin antibiotics were analyzed from the dynamics of bacterial interaction of a molecule that produces only toxic effects after the absorption of a specific wavelength of light. In addition to bacterial viability, the interaction of curcumin, antibiotics and bacteria were imaged and chemically analyzed using confocal fluorescence microscopy and Fourier-transform infrared spectroscopy (FTIR). The interaction between therapies depended on the sequential order of application, metabolic activity, and binding of bacterial cell surface biomolecules. The results demonstrated a potentiating effect of the antibiotic with up to to 32-fold reduction in minimum inhibitory concentrations and mean reductions of 7 log CFU/ml by physicochemical action at bacterial level after the photodynamic treatment. The changes observed as a result of bacteria-antibiotic interactions, such as membrane permeabilization and increase in susceptibility, may be a possibility for solving the problem of microbial multidrug resistance.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia
6.
Photochem Photobiol Sci ; 21(7): 1185-1192, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35325444

RESUMO

Onychomycosis is the most common disease caused by fungal nail infections, and often caused by dermatophytes. This infection is very resistant to antifungal treatments, and promising Photodynamic Therapy (PDT) mediated treatments has been presented as a multitarget tracking. Optimization of PDT guide for uptake time, concentration of photosensitizers (PS) and the light dose to inactivate Trichophyton mentagrophytes. Curcumin derivatives, porphyrin Chlorin e6 (CHL-E6) and Chlorin-P6-6-N-butylamide-7-methyl-ester (CHL-butyl) were evaluated. PS photobleaching was observed on the hyphae photosensitized over the time, correlating the PS concentration and light dose of antifungal PDT. Porphyrin, Curcumin, Chl-e6 and Chl-butyl concentrations of 2.5 µg/mL, 0.025 µg/mL, 10 µg/mL and 5 µg/mL respectively, under illumination of 10.5 J/cm2 were the best antifungal conditions found in the study. Curcumin, in low concentrations, and chlorin were the PSs with higher activity anti-T. mentagrophytes.


Assuntos
Curcumina , Fotoquimioterapia , Porfirinas , Antifúngicos/farmacologia , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Trichophyton
7.
Photodiagnosis Photodyn Ther ; 38: 102740, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35101624

RESUMO

Dengue, Zika, chikungunya, and yellow fever are arboviruses transmitted by Aedes aegypti mosquito. In this regard, a number of techniques have emerged aiming to combat its proliferation. Elimination of Aedes aegypti larvae by photodynamic action has been reported as an efficient approach. In this regard, this study was aimed at synthetize and characterize formulations with different proportions (w/w) of the plant-based photolarvicidal curcumin and d-mannitol (CCD 1-4) and their evaluation on sublethal photolarvicidal efficiency, photodegradation profile,solubility, internalization, elimination time, persistence in simulated field, growth of microorganisms in water and the toxicity using an animal models (Zebrafish). CCD 3 (curcumin:d-mannitol 50:50 w/w) showed the best efficacy (LC50-24h = 0.01 mg/L), and also presented the shortest internalization and longest elimination time, 60 min and 8 days, respectively. This formulation caused an extrusion into the intestine and peritrophic membrane. Moreover, CCD 3 showed a photodegradation of 50% (in 24 h) under white fluorescent lamps. In a small-scale field trial, CCD 3 had a residual time of 14 days and abnormal microbial growth was not observed. Finally, CCD 3 did not present any toxicity in Zebrafish, after exposition for 24 h at 100 mg/L. Overall, these results raise the possibility of reducing virus transmission through the controlled photoinactivation of Aedes aegypti larvae using a non-toxic plant-based formulated photolarvicide.


Assuntos
Aedes , Curcumina , Fotoquimioterapia , Infecção por Zika virus , Zika virus , Animais , Curcumina/farmacologia , Larva , Manitol , Mosquitos Vetores , Fotoquimioterapia/métodos , Peixe-Zebra
8.
Lasers Med Sci ; 37(2): 1227-1234, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387786

RESUMO

Due to the immune changes resulting from HIV/AIDS infection, systemic and local infections throughout the body are common. The use of high activity antiretroviral therapy has been widely used during treatment, which, added to the use of antibiotics, antifungals, and the patients' own immunocompromised state, cause important changes in the oral microbiota. The emergence of pathological microorganisms and with high resistance to drug therapies are frequent and cause serious damage to the oral health of these patients. In this sense, antimicrobial photodynamic therapy (aPDT) appears as a promising alternative in the control of these oral infections. The aim of the study was to test the effectiveness of a therapeutic protocol for total oral aPDT mediated by a 660-nm red LED (light-emitting diode) associated with porphyrin in individuals with AIDS. Patients were selected by exclusion criteria and randomly distributed into groups to test the effectiveness of antimicrobial aPDT with 50 µg/ml porphyrin associated with the red LED. Before and after the treatments, saliva samples were collected and processed in duplicate in selective culture media. Colonies were counted and the results obtained in Log10 CFU/ml and tested statistically. It was concluded that aPDT was effective in reducing oral enterobacteria, in addition to reducing Streptococcus spp. and general count of microorganisms, when considering the numbers of TCD4 and TCD8 lymphocytes.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fotoquimioterapia , Porfirinas , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Humanos , Boca , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico
9.
J Wound Care ; 30(4): 304-310, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33856908

RESUMO

OBJECTIVE: A pressure ulcer (PU) is an area of tissue trauma caused by continuous and prolonged pressure, often associated with hospitalised patients immobilised due to neurological problems, negatively affecting their quality of life, and burdening the public budget. The aim of this study was to report the follow-up, for 45 weeks, of three patients with neurological lesions due to trauma who subsequently developed PUs, and who were treated with a combination of photodynamic therapy (PDT), low level laser therapy (LLLT) and cellulose membrane (CM). METHOD: PDT was mediated by the photosensitiser curcumin on a 1.5% emulsion base. Blue LED light at 450 nm was delivered continuously for 12 minutes at an irradiance of 30mW/cm2 and total energy delivered to the tissue was 22J/cm2. LLLT was performed with 660 nm laser, punctuated and continuous, twice a week with parameters: spot size 0.04cm2, power of 40mW, 10 seconds per point, fluence of 10J/cm2 and irradiance of 1000mW/cm2. RESULTS: All PUs had a significant reduction (range: 95.2-100%) of their area after 45 weeks of follow-up and two PUs had complete healing at 20 weeks and 30 weeks. All of the PUs showed a reduction in contamination with the PDT treatments in different proportions. CONCLUSION: From the results obtained, we conclude that the combination of PDT, LLLT and CM is a promising treatment for PU healing.


Assuntos
Celulose/uso terapêutico , Terapia com Luz de Baixa Intensidade , Fotoquimioterapia , Úlcera por Pressão/terapia , Adulto , Seguimentos , Humanos , Masculino , Úlcera por Pressão/psicologia , Qualidade de Vida
10.
Photodiagnosis Photodyn Ther ; 34: 102262, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33771756

RESUMO

BACKGROUND: The transmission of healthcare-associated pathogens is mainly related to the massive flow of patients with infections in hospitals, presenting surfaces as potential transmission sources of these microorganisms. The physiotherapist who works in the intensive care area has become a specialist in daily routine in critical care with ventilatory support and post-surgical recovery. Furthermore, for this, the instruments are used in the patient's hands and body. Chemicals such as chlorine derivatives, triclosan, chlorhexidine and, 70 % alcohol are currently used to decontaminate surfaces. This study evaluated ultraviolet C (UV-C) irradiation efficiency in the physiotherapy object's disinfection in daily use in the Hospital Intensive Care Unit (ICU). METHODS: the microbiological quantification carried out using the elastic band during physiotherapy in a cross-sectional study with 21 patients. The methodology compared the cleaning protocol (70 % alcohol) with a new irradiation method in elastic band in the ICU. RESULTS: The results showed microbial reductions in the elastic band using both 70 % alcohol and UV-C irradiation (254 nm), with 60 s of illumination, totaling a light dose of 0.78 J/cm2; however, the UV-C irradiation showed better results. CONCLUSION: This study showed that disinfection by UV-C irradiation could be introduced in an intensive care hospital environment for physiotherapeutic conduct.


Assuntos
Infecção Hospitalar , Fotoquimioterapia , Infecção Hospitalar/prevenção & controle , Estudos Transversais , Desinfecção , Humanos , Unidades de Terapia Intensiva , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Modalidades de Fisioterapia , Raios Ultravioleta
11.
Pest Manag Sci ; 77(5): 2530-2538, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33470514

RESUMO

BACKGROUND: Resistant populations of Ae. aegypti have been a major problem in arboviruses epidemic areas, generating a strong demand for novel methods of vector control. In this regard, our group has demonstrated the use of curcumin as an efficient photoactive larvicide to eliminate Ae. aegypti larvae. This work was aimed to evaluate the Ae. aegypti (Rockefeller) development under sublethal conditions, using a curcumin/d-mannitol (DMC) formulation. The photolarvicidal efficacy under semi-field and field conditions (wild populations) was also analyzed, as well as the photobleaching and residual activity of DMC. RESULTS: A delay in development time when larvae were exposed to sublethal concentrations of DMC was observed, followed by significant changes in sex ratio and reduction in longevity. DMC also presented a low residual activity when compared to usual larvicides, and had a substantial photolarvicidal activity against wild populations in field trials, achieving 71.3% mortality after 48 h. CONCLUSIONS: Overall, these findings are of great biological importance for the process of enabling the implementation of DMC as a new product in the control of Ae. aegypti larvae, and contributes to the improvement of new plant-based larvicides. © 2021 Society of Chemical Industry.


Assuntos
Aedes , Curcumina , Inseticidas , Animais , Inseticidas/farmacologia , Larva , Manitol , Mosquitos Vetores , Razão de Masculinidade
12.
Proc Natl Acad Sci U S A ; 117(37): 22967-22973, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868444

RESUMO

Hospital-acquired infections are a global health problem that threatens patients' treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient's trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT's functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy's potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Curcumina/farmacologia , Intubação Intratraqueal/instrumentação , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Curcumina/química , Humanos , Intubação Intratraqueal/efeitos adversos , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
13.
Biosensors (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806501

RESUMO

Industrial fermentation generates products through microbial growth associated with the consumption of substrates. The efficiency of industrial production of high commercial value microbial products such as ethanol from glucose (GLU) is dependent on bacterial contamination. Controlling the sugar conversion into products as well as the sterility of the fermentation process are objectives to be considered here by studying GLU and ultraviolet light (UV) sensors. In this work, we present two different approaches of SnO2 nanowires grown by the Vapor-Liquid-Solid (VLS) method. In the GLU sensor, we use SnO2 nanowires as active electrodes, while for the UV sensor, a nanowire film was built for detection. The results showed a wide range of GLU sensing and as well as a significant influence of UV in the electrical signal. The effect of a wide range of GLU concentrations on the responsiveness of the sensor through current-voltage based on SnO2 nanowire films under different concentration conditions ranging was verified from 1 to 1000 mmol. UV sensors show a typical amperometric response of SnO2 nanowires under the excitation of UV and GLU in ten cycles of 300 s with 1.0 V observing a stable and reliable amperometric response. GLU and UV sensors proved to have a promising potential for detection and to control the conversion of a substrate into a product by GLU control and decontamination by UV control in industrial fermentation systems.


Assuntos
Técnicas Biossensoriais/métodos , Fermentação , Glucose , Raios Ultravioleta , Eletrodos , Nanofios
14.
Expert Rev Anti Infect Ther ; 18(7): 689-696, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336177

RESUMO

OBJECTIVES: To test the effectiveness of an efficient therapeutic protocol for the total mouth antimicrobial photodynamic therapy (aPDT) mediated by 450 nm blue LED associated with curcumin in individuals with AIDS. METHODS: Patients were selected by exclusion criteria and randomly distributed in groups to test the effectiveness of antimicrobial aPDT with curcumin 0.75 mg/mL associated with the blue LED (67 mW/cm2, 20.1 J/cm2). Before and after the treatments, samples were collected from the saliva being processed in duplicate in selective culture media. The colonies were counted and the results obtained in log10 CFU/mL were statistically tested (T-paired statistical test, 5%). RESULTS: The log10 CFU/mL of Streptococcus spp., Staphylococcus spp., and total count of microorganisms showed statistically significant (p = 0.023; p = 0.001 and p = 0.017, respectively) reduction after treatment in patients with aPDT. CONCLUSION: aPDT was effective in reducing Streptococcusspp. in addition to reducing Staphylococcusspp., enterobacteria and the total count of microorganisms when considering the numbers of TCD4 and TCD8 lymphocytes. The aPDT in the studied protocol was able to control clinically important intraoral microorganisms for AIDS patients, both those with TCD4 lymphocytes above or below 25% of normal and those with TCD8 lymphocytes above 25% of normal.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Anti-Infecciosos/administração & dosagem , Curcumina/administração & dosagem , Fotoquimioterapia/métodos , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Síndrome da Imunodeficiência Adquirida/complicações , Adulto , Anti-Infecciosos/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Curcumina/farmacologia , Humanos , Boca/microbiologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia
15.
Nanotechnology ; 31(16): 165501, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31770731

RESUMO

Cyclodextrin (CD) is a conical compound used in food and pharmaceutical industry to complexation of hydrophobic substances. It is a product of microbial enzymes which converts starch into CD during their activity. We aim to detect CD using active-electrode biosensor of SnO2. They were grown on active electrode by the VLS method. The CD consists of several glucose units which have hydroxyl groups which tend to bind to interface states present in nanowires changing their conductivity. Experimental results of electrical conductivity at different CD concentrations are presented. A model that describes the influence of adsorbed glucose on nanowires and its electrical properties is also presented. Some general observations are performed on the applicability of the CD adsorption method by the nanowire-based biosensor.


Assuntos
Técnicas Biossensoriais , Ciclodextrinas/análise , Glucosiltransferases/metabolismo , Nanofios/química , Compostos de Estanho/química , Bacillus/enzimologia , Eletricidade , Eletrodos , Nanofios/ultraestrutura , Fatores de Tempo
16.
Photodiagnosis Photodyn Ther ; 30: 101603, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31821900

RESUMO

The objective of this study was to evaluate and compare the clinical response to PDT (Photodynamic Therapy) in field cancerization using two aminolevulinate derivatives. Forty patients with multiple actinic keratosis (AK) on forearms and hands scattered received two sessions of ALA and MAL-PDT at 630 nm (36 J/cm2). The AK clearance rate was 72 % for both drugs with a significant decrease in AK observed clinically (p < 00,001). Clinical improvement in field cancerization using two aminolevulinate derivatives in PDT is proven with no significant difference in the efficacy of drugs.


Assuntos
Ceratose Actínica , Fotoquimioterapia , Ácido Aminolevulínico/uso terapêutico , Humanos , Ceratose Actínica/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Resultado do Tratamento
17.
Cancer Control ; 26(1): 1073274819856885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242758

RESUMO

Along the past years, a national program to implement photodynamic therapy (PDT) for nonmelanoma skin cancer (NMSC) was performed over the Brazilian territory. Using a strategy involving companies, national bank, and medical partners, equipment, medication, and protocols were tested in a multicenter study. With results collected over 6 years, we could reach a great deal of advances concerning the use of PDT for skin cancer. We present the overall reached results of the program and discuss several aspects about it, including public politics of treatment. A discussion about advantages of this technique within conditions of health care is placed, comparing PDT with surgery, including an analysis about the implementation of PDT in countries in development as Brazil, considering not only technical but social aspects, as the distribution of medical doctor in the Brazilian territory. The program resulted in a huge dissemination of PDT in Brazil and many countries in Latin America, in a partnership among public politics, universities, companies, and hospitals and clinics and in the insertion of national technologies as option to treat NMSC. Consequence of the program is mainly the continuation of the use of PDT in Brazil and many countries in Latin America.


Assuntos
Carcinoma Basocelular/tratamento farmacológico , Programas Nacionais de Saúde , Fotoquimioterapia , Avaliação de Programas e Projetos de Saúde , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Carcinoma Basocelular/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/epidemiologia , Resultado do Tratamento , Adulto Jovem
18.
Infect Disord Drug Targets ; 18(3): 218-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29788897

RESUMO

BACKGROUND: Hospital infections are a public health problem that can occur with the use of catheters and endotracheal tubes (ETT). Pathogenic microorganisms may adhere to surfaces of these materials forming a biofilm and produce an extracellular polymer matrix that promotes resistance of microorganisms to factors such as pH, temperature and drugs. The conventional treatment is being made by antibiotics, which has serious adverse effects in immunocompromised patients. Photodynamic therapy (PDT) is an alternative for microbial inactivation noninvasive without the stimulus of microbial resistance. PDT combines light and a photosensitive molecule for produce reactive oxygen species leading to bacterial death. OBJECTIVE: The objective of this study was to determine the efficacy of a PDT protocol in bacterial inactivation of biofilm ETT. METHOD: The photosensitizer (PS) used was curcumin and the light source LED at 450nm. A statistical experimental design was used for optimization of antimicrobial PDT. RESULTS: The highest microbial inactivation was observed with 70% biofilm reduction in conditions 1.25 mg/mL curcumin, 2 h of PS incubation and 50 J/cm2. CONCLUSION: This study described the photodynamic death of bacteria forming a biofilm on ETT. Parameters optimization was important for clinical application of this system.


Assuntos
Biofilmes/efeitos dos fármacos , Contaminação de Equipamentos , Intubação Intratraqueal , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Curcumina/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento
19.
Photodiagnosis Photodyn Ther ; 23: 106-110, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29654842

RESUMO

Human papillomaviruses (HPV) are the most common sexually-transmitted virus, and carcinogenic HPV strains are reported to be responsible for virtually all cases of cervical cancer and its precursor, the cervical intraepithelial neoplasia (CIN). About 30% of the sexually active population are considered to be affected by HPV. Around 600 million people are estimated to be infected worldwide. Diseases related to HPV cause significant impact from both the personal welfare point of view and public healthcare perspective. This resource letter collects relevant information regarding HPV-induced lesions and discusses both diagnosis and treatment, with particular attention to optical techniques and the challenges involved to the implementation of those approaches.


Assuntos
Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/tratamento farmacológico , Fotoquimioterapia/métodos , Condiloma Acuminado/diagnóstico , Condiloma Acuminado/terapia , Técnicas Citológicas/métodos , Feminino , Humanos , Técnicas de Sonda Molecular , Papillomaviridae , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/tratamento farmacológico
20.
Photomed Laser Surg ; 35(12): 666-671, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29023187

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effectiveness of a new handheld equipment based on a mercury low-pressure vapor lamp. The Surface UV® device was tested in Staphylococcus aureus, Streptococcus mutans, Streptococcus pneumoniae, two strains of Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and other clinical microorganisms isolated from different surfaces of a public health hospital. BACKGROUND DATA: The incidence of hospital infections has increased in recent years. Despite the variety of available chemicals to reduce the microorganisms, the search for antimicrobial agents and the characterization of novel targets are a continued need. Also, the minimization of chemical procedures is a constant need, and the use of ultraviolet (UV) light as a germicidal device for microorganisms' inactivation has been an alternative and one possible approach for the reduction of contamination. MATERIALS AND METHODS: The in vitro decontamination was performed by application of Surface UV in different species of microorganisms (study 1). The surface decontamination was carried out by application of Surface UV on each surface of hospital environment (study 2). The device presents ultraviolet C (UV-C) light at 254 nm and produces an irradiance of 13 mW/cm2 at a distance of 1 cm of the surfaces. The light dose was 0.78 J/cm2 for 60 sec of application in both studies. RESULTS: The results for in vitro decontamination indicated a log10 reduction factor of 6.5 for S. aureus, 6.7 for S. mutans, 6.2 for S. pneumoniae, 5.4 for E. coli, 5.2 for E. coli (ATCC 8739), 5.4 for P. aeruginosa, and 6.7 for C. albicans. The hospital level of microorganisms decreases more by 75% after the procedure. CONCLUSIONS: The study highlights the development and successful application of a new portable device that can reduce the risk of contamination in health settings. Our results suggest that Surface UV is efficient and may be an alternative decontamination method.


Assuntos
Descontaminação/instrumentação , Desinfecção/instrumentação , Terapia com Luz de Baixa Intensidade/instrumentação , Raios Ultravioleta , Hospitais Públicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA