Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 83: 127399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325180

RESUMO

BACKGROUND: Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD: Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 µg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS: Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION: Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.


Assuntos
Compostos de Etilmercúrio , Compostos de Mercúrio , Mercúrio , Humanos , Criança , Lactente , Ratos , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Timerosal/farmacologia , Peróxido de Hidrogênio/metabolismo , Ratos Wistar , Mitocôndrias/metabolismo , Superóxido Dismutase , Compostos de Sulfidrila
2.
Food Chem ; 257: 302-309, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29622215

RESUMO

The unplanned inclusion of antinutrients in fish food affects many biological processes, such as digestibility of amino acids and diet conversion, resulting in undesirable effects on body growth. Thus, the objective of this research was to propose the use of immobilized fish proteases in the detection of protease inhibitors, one of the most important antinutrients. In order to evaluate the detection of antinutritional factors through the immobilized trypsin, the enzyme was incubated with eight diets developed for commercial fish, and residual activity was measured. Comparatively, the tilapia trypsin showed an inhibition of antinutrients (protease inhibitors), present in the eight studied diets, up to 48% greater than the porcine trypsin immobilized in magnetic chitosan. Thus, it is possible to suggest the use of immobilized derivatives containing specific proteases of the target organism in the detection of antinutritional factors that reduce animal's digestive capacity and negatively influence their growth during husbandry.


Assuntos
Ração Animal/análise , Quitosana/química , Tripsina/química , Animais , Aquicultura/métodos , Digestão , Enzimas Imobilizadas/química , Proteínas de Peixes/química , Magnetismo , Tilápia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA