Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 1008871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313091

RESUMO

This study aimed to evaluate several cocoa semi-skimmed milk formulations (CSMFs) as potential carriers of native lactic acid bacteria (LAB) strains to obtain novel probiotic beverages (PBs) with improved technological and functional characteristics, and satisfactorily organoleptic acceptance. The viability of two native LAB (Lactiplantibacillus plantarum UTNGt2 and Lactiplantibacillus pentosus UTNGt5) was assessed in comparison with two references (Lactococcus lactis subsp. lactis ATCC11474 and Limosilactobacillus reuteri DSM17938) strains in supplemented CSMFs throughout storage with refrigeration. The optimum conditions to produce novel beverages supplemented with native LAB were pH 6.6, 42°C, and 1 h of fermentation. Moreover, the effect of LAB strains fortification on pH, titratable acidity, total solids (°Brix), total polyphenolic compounds (TPC), antioxidant capacity (AOX), and ascorbic acid content (AAC), total proteins and fat, at initial and final storage was evaluated. The addition of two native LAB strains did alter the physicochemical quality of CSMFs to a lesser extent, where the bioactive molecules improved significantly (p < 0.05) with the increase of cocoa concentration and depending on the supplied strain. Although a statistically significant (p < 0.05) decrease in cell counts was recorded during storage, the LAB cells were found to be viable up to 21 days of storage at 4°C (>6 logCFU/ml), which is sufficient in number to prove their stability in vitro. Overall organoleptic results suggested that LAB supplementation had a significant impact on sensory attributes with satisfactory acceptability (>78%) of PBs containing the native strains and 1-2% cocoa, while CSMFs counterparts were less appreciated (40%) as perceived off-flavor. It appears that supplying bacteria to CSMF preserves flavor in the final product. Furthermore, the final beverages were free of harmful bacteria; thus, they comply with consumer safety regulations. This study concludes that CSMF can be used as a carrier of native LAB strains, maintaining cell viability, unaltered physicochemical properties, and improved functional and sensory characteristics, for which final beverages can be regarded as functional food. From the application standpoint, these formulations are an alternative to delivering native LAB strains and could help the cocoa and dairy industry to develop more attractive products for the growing regional market.

2.
Front Microbiol ; 13: 868025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464932

RESUMO

The present work describes the genome sequencing and characterization of a novel Lactiplantibacillus plantarum strain assigned UTNGt21A isolated from wild Solanum quitoense (L.) fruits. In silico analysis has led to identifying a wide range of biosynthetic gene clusters (BGCs) and metabolic compounds. The genome had a total of 3,558,611 bp with GC of 43.96%, harboring 3,449 protein-coding genes, among which 3,209 were assigned by the EggNOG database, and 240 hypothetical proteins have no match in the BLASTN database. It also contains 68 tRNAs, 1 23S rRNA, 1 16S rRNA, 6 5S rRNA, and 1 tmRNA. In addition, no acquired resistance genes nor virulence and pathogenic factors were predicted, indicating that UTNGt21A is a safe strain. Three areas of interest (AOI) consisting of multiple genes encoding for bacteriocins and ABC transporters were predicted with BAGEL4, while eight secondary metabolite regions were predicted with the antiSMASH web tool. GutSMASH analysis predicted one metabolic gene cluster (MGC) type pyruvate to acetate-formate, a primary metabolite region essential for anaerobe growth. Several lanthipeptides and non-ribosomal peptide synthetase (NRPS) clusters were detected in the UTNGt21A but not the reference genomes, suggesting that their genome diversity might be linked to its niche-specific lineage and adaptation to a specific environment. Moreover, the application of a targeted genome mining tool (RiPPMiner) uncovered a diverse arsenal of important antimicrobial molecules such as lanthipeptides. Furthermore, in vitro analysis indicated that the crude extract (CE) of UTNGt21A exerted a wide spectrum of inhibition against several pathogens. The results indicated that the possible peptide-protein extract (PC) from UTNGt21A induces morphological and ultrastructural changes of Salmonella enterica subsp. enterica ATCC51741, compatible with its inhibitory potential. Genome characterization is the basis for further in vitro and in vivo studies to explore their use as antimicrobial producers or probiotic strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA