Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 51(4): 405-412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35103997

RESUMO

BACKGROUND: Fibrous dysplasia (FD) and cemento-ossifying fibroma (COF) are the most common gnathic fibro-osseous lesions. These diseases exhibit remarkable overlap of several clinicopathological aspects, and differential diagnosis depends on the combination of histopathological, radiographic, and clinical aspects. Their molecular landscape remains poorly characterized, and herein, we assessed their proteomic and phosphoproteomic profiles. METHODS: The quantitative differences in protein profile of FD and COF were assessed by proteomic and phosphoproteomic analyses of formalin-fixed paraffin-embedded tissue samples. Pathway enrichment analyses with differentially regulated proteins were performed. RESULTS: FD and COF exhibited differential regulation of pathways related to extracellular matrix organization, cell adhesion, and platelet and erythrocytes activities. Additionally, these lesions demonstrated distinct abundance of proteins involved in osteoblastic differentiation and tumorigenesis and differential abundance of phosphorylation of Ser61 of Yes-associated protein 1 (YAP1). CONCLUSIONS: In summary, despite the morphological similarity between these diseases, our results demonstrated that COF and DF present numerous quantitative differences in their proteomic profiles. These findings suggest that these fibro-osseous lesions trigger distinct molecular mechanisms during their pathogenesis. Moreover, some proteins identified in our analysis could serve as potential biomarkers for differential diagnosis of these diseases after further validation.


Assuntos
Cementoma , Fibroma Ossificante , Displasia Fibrosa Óssea , Cementoma/diagnóstico , Cementoma/patologia , Diagnóstico Diferencial , Fibroma Ossificante/metabolismo , Displasia Fibrosa Óssea/patologia , Humanos , Proteômica
2.
Metabolomics ; 16(10): 105, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000429

RESUMO

BACKGROUND: Head and neck cancers are the seventh most common type of cancer worldwide, with almost half of the cases affecting the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, showing poor prognosis and high mortality. OSCC molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Metabolomics is a recently developed sub-area of omics sciences focused on the comprehensive analysis of small molecules involved in several biological pathways by high throughput technologies. AIM OF REVIEW: This review summarizes and evaluates studies focused on the metabolomics analysis of OSCC and oral premalignant disorders to better interpret the complex process of oral carcinogenesis. Additionally, the metabolic biomarkers signatures identified so far are also included. Moreover, we discuss the limitations of these studies and make suggestions for future investigations. KEY SCIENTIFIC CONCEPTS: Although many questions about the metabolic features of OSCC have already been answered in metabolomic studies, further validation and optimization are still required to translate these findings into clinical applications.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Biomarcadores Tumorais/metabolismo , Humanos , Metabolômica/métodos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
J Oral Pathol Med ; 48(10): 906-910, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31310691

RESUMO

BACKGROUND: Pyogenic granuloma (PG) is a benign nodular lesion with a prominent vascular component which may affect different sites. Recently, BRAF, KRAS, HRAS, NRAS, GNA11, and GNA14 mutations were reported on PGs of the skin. The present study assessed the role of the MAPK/ERK pathway in oral PG pathogenesis. METHODS: Mutations in hotspot regions of genes involved in the MAPK/ERK pathway activation were investigated by Sanger sequencing. The expression of phospho-ERK1/2 was evaluated by immunohistochemistry. RESULTS: Oral PGs did not show mutations in the sequenced regions of the genes BRAF, KRAS, HRAS, NRAS, GNA11, or GNA14. Our results also showed activation of the MAPK/ERK pathway demonstrated by phospho-ERK1/2 immunohistochemical positivity. CONCLUSIONS: Although oral PG shows MAPK/ERK pathway activation, the driver molecular event remains to be elucidated.


Assuntos
Granuloma Piogênico/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Adolescente , Adulto , Idoso , Feminino , GTP Fosfo-Hidrolases/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Granuloma Piogênico/genética , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA