RESUMO
Oxytocin (OXT), a pro-social peptide, is increasingly recognized as a potential protective substance against drug addiction. In the context of ethanol, previous research has shown OXT's properties in reducing self-administration, alleviating motor impairment in rodents, and reducing craving in humans. However, its role in behavioral sensitization, a neuroadaptive response resulting from repeated drug exposure linked to an increased drug incentive, remains unexplored. OXT is recognized for its role in regulating the hypothalamic-pituitary-adrenal (HPA) axis, in which corticosterone is acknowledged as a significant factor in the development of behavioral sensitization. This study aimed to investigate the effects of carbetocin (CBT), an analogue of OXT, on the expression of behavioral sensitization to ethanol and the concurrent alterations in plasma corticosterone levels in male and female Swiss mice. We also aimed to confirm previous studies on OXT's impact on ethanol consumption in male mice, but with a focus on CBT, using the two-bottle choice model and the drinking in the dark (DID) methodology. For the sensitization study, the mice received either ethanol (1.8 g/kg, i.p.) or saline treatments daily for 15 consecutive days, followed by treatment with carbetocin (0.64 mg/kg, i.p.) or a vehicle for 6 days. Subsequently, on day 22, all the animals underwent an ethanol challenge to assess the expression of behavioral sensitization. The plasma corticosterone levels were measured on days 21 and 22. The CBT effectively prevented the expression of ethanol-induced behavioral sensitization in both male and female subjects, with no alterations having been detected in their corticosterone levels. In the ethanol consumption study, following an initial phase of ethanol acquisition, the male mice underwent a 6-day treatment with CBT i.p. or saline before being re-exposed to ethanol. We also found a reduction in their ethanol consumption due to the CBT treatment. In conclusion, carbetocin emerges as a promising and effective intervention for mitigating ethanol-induced behavioral sensitization and reducing ethanol intake, highlighting its potential significance in alcohol addiction treatment.
RESUMO
Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.