Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1865(8): 184216, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37598878

RESUMO

Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.


Assuntos
Nanoestruturas , Nanotubos , Ouro , Membranas , Membrana Celular , Escherichia coli
2.
J Photochem Photobiol B ; 218: 112173, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799010

RESUMO

Photodynamic damage to the cell envelope can inactivate microorganisms and may be applied to combat super-resistance phenomenon, empowered by the indiscriminate use of antibiotics. Efficiency in microbial inactivation is dependent on the incorporation of photosensitizers (PS) into the bacterial membranes to trigger oxidation reactions under illumination. Herein, Langmuir monolayers of Escherichia coli lipid extract were built to determine the binding mechanisms and oxidation outcomes induced by eosin decyl ester (EosDEC) and toluidine blue-O (TBO) PSs. Surface-pressure isotherms of the E. coli monolayers were expanded upon EosDEC and TBO, suggesting incorporation of both PSs. Fourier-transform infrared spectroscopy (FTIR) of Langmuir-Schaefer (LS) films reveled that the EosDEC and TBO binding mechanisms are dominated by electrostatic interactions with the anionic polar groups, with limited penetration into the chains. Light-irradiation reduced the relative area of E. coli monolayer on TBO, indicating an increased loss of material to the subphase owing to the chain cleavage, generated by contact-dependent reactions with excited states of TBO. In contrast, the increased relative area of E. coli monolayers containing EosDEC suggests lipid hydroperoxidation, which is PS contact-independent. Even considering a small chain penetration, the saturated EosDEC may have partitioned towards saturated reach domains, avoiding direct contact with membrane unsaturations.


Assuntos
Misturas Complexas/química , Amarelo de Eosina-(YS)/química , Escherichia coli/química , Lipídeos/química , Fármacos Fotossensibilizantes/química , Cloreto de Tolônio/química , Membrana Celular , Membranas Artificiais , Oxirredução , Permeabilidade , Processos Fotoquímicos , Eletricidade Estática , Relação Estrutura-Atividade
3.
Langmuir ; 36(32): 9578-9585, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672975

RESUMO

Photodynamic therapy (PDT) is promising for bacterial inactivation since cellular internalization of photosensitizers (PS) is not crucial for the treatment effectiveness. Photoinduced damage in the lipid envelope may already induce microbial inactivation, which requires PS capable of easily penetrating into the membrane. Herein, we report on the insertion of the PS eosin decyl ester (EosDec) into Langmuir films of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), and cardiolipin (CLP) used as mimetic systems of bacterial membranes. Surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) indicated that the hydrophobic nature of EosDec favored deeper penetration in all the phospholipid monolayers. The incorporation of EosDec led to monolayer expansion, especially in the anionic DOPG and CLP owing to repulsive electrostatic interactions, and induced disorder in the lipid chains. Light irradiation of DOPE, DOPG, and CLP monolayers containing EosDec increased the rate of material loss to the subphase, which is attributed to cleavage of lipid chains triggered by contact-dependent reactions between excited states of EosDec and lipid unsaturations. The latter is key for membrane permeabilization and efficiency in microbial inactivation.


Assuntos
Ésteres , Fosfolipídeos , Amarelo de Eosina-(YS) , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Fármacos Fotossensibilizantes/farmacologia
4.
Colloids Surf B Biointerfaces ; 194: 111189, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32580142

RESUMO

Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.


Assuntos
Nanopartículas Metálicas , Neoplasias , Adsorção , Membrana Celular , Ouro , Humanos , Oxirredução
5.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829205

RESUMO

The term phytotelma (pl. phytotelmata) designates a plant-associated reservoir of fresh water and organic debris. Phytotelmata in tank bromeliads are abundant in tropical forests, and they provide shelter, food, and water for many metazoans. Among the invertebrates known to inhabit phytotelmata, nematodes are the least studied, despite their important role in nutrient and energy cycles in freshwater ecosystems. This study was conceived to characterize the nematode trophic structure in the phytotelma of the bromeliad N. cruenta, and to identify climate and microenvironmental variables that impact it. Nematode abundance (total and per trophic group), rainfall, air temperature, the amount of organic debris fallen into the phytotelma, and eight physico-chemical properties (PCPs) of the water retained in the bromeliad tank - volume; temperature; pH; dissolved organic carbon, nitrogen, oxygen, and solids; and electrical conductivity - were monitored during two years in a natural reserve in Brazil. Bacterial and hyphal feeder nematodes predominated over other trophic groups. Nematode abundance (total and per trophic group) was not impacted by fluctuations in rainfall or air temperature. The amount of organic debris fallen into the phytotelma correlated positively with nematode abundance (total and per trophic group). Regarding the PCPs of water, the only significant correlation - positive - was between the amount of dissolved oxygen and the abundance of hyphal feeder nematodes. These results bring a clearer understanding of the ecology of nematodes inhabiting phytotelmata, which are peculiar and understudied freshwater ecosystems.

6.
Langmuir ; 35(51): 16745-16751, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31746210

RESUMO

The alarming increase in bacterial resistance to antibiotics has demanded new strategies for microbial inactivation, which include photodynamic therapy whose activity relies on the photoreaction damage to the microorganism membrane. Herein, the binding mechanisms of the photosensitizer toluidine blue-O (TBO) on simplified models of bacterial membrane with Langmuir monolayers of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) were correlated to the effects of the photoinduced lipid oxidation. Langmuir monolayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were also used as a reference of mammalian membranes. The surface pressure isotherms combined with polarization-modulated infrared reflection absorption spectroscopy revealed that TBO expands DOPC, DOPE, and DOPG monolayers owing to electrostatic interactions with the negatively charged groups in the phospholipids, with a stronger adsorption on DOPG, which has a net surface charge. Light irradiation made the TBO-containing DOPC and DOPE monolayers less unstable as a result of the singlet oxygen (1O2) reaction with the chain unsaturation and hydroperoxide formation. In contrast, the decreased stability of the irradiated TBO-containing DOPG monolayer suggests the cleavage of carbon chains. The anionic nature of DOPG allowed a deeper penetration of TBO into the chain region, favoring contact-dependent reactions between the excited triplet state of TBO and lipid unsaturations or/and hydroperoxide groups, which is the key for the cleavage reactions and further membrane permeabilization.


Assuntos
Bactérias , Membrana Celular , Membranas Artificiais , Processos Fotoquímicos , Cloreto de Tolônio/química , Oxirredução , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química
7.
J Nematol ; 51: 1-7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339672

RESUMO

Entomopathogenic nematodes have been evaluated for control of mosquito species for decades. Depending on the nematode and mosquito involved, mortality rates of larvae (L) may reach 100% in vitro. Nonetheless, nematode efficacy at oviposition sites has rarely been assessed. Heterorhabditis indica LPP35 has been shown to kill over 75% of Aedes aegypti L3/L4 in cups and bottles outdoors. To assess its efficacy in indoor oviposition sites, different types/sizes of floor drains and pot saucers, and 65 liter water barrels, were infested with L3/L4 and treated with two doses of infective juveniles (IJs). In floor drains, mortality rates varied from 45 to 82%, with better results in the smallest drains. The adjustable dose of 25 IJs/cm2 of the drain's bottom internal surface gave better results than the fixed dose of 100 IJs/larva. Mortality rates were only 28 to 53% and 0.1 to 1.7% in pot saucers and water barrels, respectively, probably because ridges and grooves that marked the bottom internal surface of these containers hindered the encounter of larvae and IJs.Entomopathogenic nematodes have been evaluated for control of mosquito species for decades. Depending on the nematode and mosquito involved, mortality rates of larvae (L) may reach 100% in vitro. Nonetheless, nematode efficacy at oviposition sites has rarely been assessed. Heterorhabditis indica LPP35 has been shown to kill over 75% of Aedes aegypti L3/L4 in cups and bottles outdoors. To assess its efficacy in indoor oviposition sites, different types/sizes of floor drains and pot saucers, and 65 liter water barrels, were infested with L3/L4 and treated with two doses of infective juveniles (IJs). In floor drains, mortality rates varied from 45 to 82%, with better results in the smallest drains. The adjustable dose of 25 IJs/cm2 of the drain's bottom internal surface gave better results than the fixed dose of 100 IJs/larva. Mortality rates were only 28 to 53% and 0.1 to 1.7% in pot saucers and water barrels, respectively, probably because ridges and grooves that marked the bottom internal surface of these containers hindered the encounter of larvae and IJs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA