Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 61(9): 1470-1489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32370550

RESUMO

Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.


Assuntos
Complexos de Coordenação , Disponibilidade Biológica , Humanos , Minerais , Peptídeos , Espécies Reativas de Oxigênio
2.
Foods ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640574

RESUMO

Iron deficiencies continue to cause significant health problems in vulnerable populations. A good strategy to combat mineral deficiency includes fortification with iron-binding peptides. This research aims to determine the optimal conditions to hydrolyze red tilapia viscera (RTV) using Alcalase 2.4 L and recovery of iron-binding protein hydrolysate. The result showed that under the optimal hydrolysis condition including pH 10, 60 °C, E/S ratio of 0.306 U/g protein, and substrate concentration of 8 g protein/L, the obtained hydrolysate with 42.5% degree of hydrolysis (RTVH-B), displayed the maximal iron-binding capacity of 67.1 ± 1.9%. Peptide fractionation was performed using ultrafiltration and the <1 kDa fraction (FRTVH-V) expressed the highest iron-binding capacity of 95.8 ± 1.5%. Iron content of RTVH-B and its fraction was assessed, whereas iron uptake was measured indirectly as ferritin synthesis in a Caco-2 cell model and the result showed that bioavailability of bound minerals from protein complexes was significantly higher (p < 0.05) than iron salt in its free form, increased 4.7 times for the Fe2+-RTVH-B complex. This research suggests a potential application of RTVH-B as dietary supplements to improve iron absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA