Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
BMC Genomics ; 25(1): 93, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254039

RESUMO

BACKGROUNDING: Stayability, which may be defined as the probability of a cow remaining in the herd until a reference age or at a specific number of calvings, is usually measured late in the animal's life. Thus, if used as selection criteria, it will increase the generation interval and consequently might decrease the annual genetic gain. Measuring stayability at an earlier age could be a reasonable strategy to avoid this problem. In this sense, a better understanding of the genetic architecture of this trait at different ages and/or at different calvings is important. This study was conducted to identify possible regions with major effects on stayability measured considering different numbers of calvings in Nellore cattle as well as pathways that can be involved in its expression throughout the female's productive life. RESULTS: The top 10 most important SNP windows explained, on average, 17.60% of the genetic additive variance for stayability, varying between 13.70% (at the eighth calving) and 21% (at the fifth calving). These SNP windows were located on 17 chromosomes (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 27, and 28), and they harbored a total of 176 annotated genes. The functional analyses of these genes, in general, indicate that the expression of stayability from the second to the sixth calving is mainly affected by genetic factors related to reproductive performance, and nervous and immune systems. At the seventh and eighth calvings, genes and pathways related to animal health, such as density bone and cancer, might be more relevant. CONCLUSION: Our results indicate that part of the target genomic regions in selecting for stayability at earlier ages (from the 2th to the 6th calving) would be different than selecting for this trait at later ages (7th and 8th calvings). While the expression of stayability at earlier ages appeared to be more influenced by genetic factors linked to reproductive performance together with an overall health/immunity, at later ages genetic factors related to an overall animal health gain relevance. These results support that selecting for stayability at earlier ages (perhaps at the second calving) could be applied, having practical implications in breeding programs since it could drastically reduce the generation interval, accelerating the genetic progress.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Feminino , Animais , Bovinos/genética , Fenótipo , Probabilidade , Reprodução/genética
3.
Anim Genet ; 55(1): 55-65, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112158

RESUMO

This study aimed to build gene-biological process networks with differentially expressed genes associated with economically important traits of Nelore cattle from 17 previous studies. The genes were clustered into three groups by evaluated traits: group 1, production traits; group 2, carcass traits; and group 3, meat quality traits. For each group, a gene-biological process network analysis was performed with the differentially expressed genes in common. For production traits, 37 genes were found in common, of which 13 genes were enriched for six Gene Ontology (GO) terms; these terms were not functionally grouped. However, the enriched GO terms were related to homeostasis, the development of muscles and the immune system. For carcass traits, four genes were found in common. Thus, it was not possible to functionally group these genes into a network. For meat quality traits, the analysis revealed 222 genes in common. CSRP3 was the only gene differentially expressed in all three groups. Non-redundant biological terms for clusters of genes were functionally grouped networks, reflecting the cross-talk between all biological processes and genes involved. Many biological processes and pathways related to muscles, the immune system and lipid metabolism were enriched, such as striated muscle cell development and triglyceride metabolic processes. This study provides insights into the genetic mechanisms of production, carcass and meat quality traits of Nelore cattle. This information is fundamental for a better understanding of the complex traits and could help in planning strategies for the production and selection systems of Nelore cattle.


Assuntos
Redes Reguladoras de Genes , Carne , Bovinos/genética , Animais , Fenótipo , Expressão Gênica , Carne/análise
4.
Front Genet ; 14: 1118308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662838

RESUMO

Beef cattle affected by feet and legs malformations (FLM) cannot perform their productive and reproductive functions satisfactorily, resulting in significant economic losses. Accelerated weight gain in young animals due to increased fat deposition can lead to ligaments, tendon and joint strain and promote gene expression patterns that lead to changes in the normal architecture of the feet and legs. The possible correlated response in the FLM due to yearling weight (YW) selection suggest that this second trait could be used as an indirect selection criterion. Therefore, FLM breeding values and the genetic correlation between FLM and yearling weight (YW) were estimated for 295,031 Nellore animals by fitting a linear-threshold model in a Bayesian approach. A genome-wide association study was performed to identify genomic windows and positional candidate genes associated with FLM. The effects of single nucleotide polymorphisms (SNPs) on FLM phenotypes (affected or unaffected) were estimated using the weighted single-step genomic BLUP method, based on genotypes of 12,537 animals for 461,057 SNPs. Twelve non-overlapping windows of 20 adjacent SNPs explaining more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of candidate genes identified six genes (ATG7, EXT1, ITGA1, PPARD, SCUBE3, and SHOX) that may play a role in FLM expression due to their known role in skeletal muscle development, aberrant bone growth, lipid metabolism, intramuscular fat deposition and skeletogenesis. Identifying genes linked to foot and leg malformations enables selective breeding for healthier herds by reducing the occurrence of these conditions. Genetic markers can be used to develop tests that identify carriers of these mutations, assisting breeders in making informed breeding decisions to minimize the incidence of malformations in future generations, resulting in greater productivity and animal welfare.

5.
Trop Anim Health Prod ; 55(5): 302, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726409

RESUMO

The study was conducted with the objective of estimating genetic and phenotypic parameters for tick (CRM) and Babesia bigemina (IBBi), Babesia bovis (IBBo), and Anaplasma marginale (IAM) burden in Angus female breed in Brazil. The sample group was composed of Angus females raised in herds located in a region of endemic instability for cattle tick fever in the state of Rio Grande Sul (RS), Brazil. The variance components were estimated using Bayesian inference and Gibbs sampling algorithm, considering a multi-trait animal model. Heritability estimates showed values of low magnitude, ranging from 0.03 (IBBo) to 0.16 (CRM), while repeatability estimates ranged between 0.07 (IBBo) and 0.21 (CRM). Regarding the genetic correlation estimates, the values showed low (-0.01 for IBBo × IAM) to moderate (0.55 between IBBi × IAM) magnitudes. The results indicate that it is possible to use tick count and hemoparasite infection levels as selection criteria, with small genetic gains.


Assuntos
Anaplasma marginale , Babesia , Babesiose , Feminino , Animais , Teorema de Bayes , Algoritmos , Babesia/genética , Babesiose/epidemiologia
6.
Sci Rep ; 13(1): 10399, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369809

RESUMO

The wide use of genomic information has enabled the identification of lethal recessive alleles that are the major genetic causes of reduced conception rates, longer calving intervals, or lower survival for live-born animals. This study was carried out to screen the Nellore cattle genome for lethal recessive haplotypes based on deviation from the expected population homozygosity, and to test SNP markers surrounding the lethal haplotypes region for association with heifer rebreeding (HR), post-natal mortality (PNM) and stayability (STAY). This approach requires genotypes only from apparently normal individuals and not from affected embryos. A total of 62,022 animals were genotyped and imputed to a high-density panel (777,962 SNP markers). Expected numbers of homozygous individuals were calculated, and the probabilities of observing 0 homozygotes was obtained. Deregressed genomic breeding values [(G)EBVs] were used in a GWAS to identify candidate genes and biological mechanisms affecting HR, STAY and PNM. In the functional analyses, genes within 100 kb down and upstream of each significant SNP marker, were researched. Thirty haplotypes had high expected frequency, while no homozygotes were observed. Most of the alleles present in these haplotypes had a negative mean effect for PNM, HR and STAY. The GWAS revealed significant SNP markers involved in different physiological mechanisms, leading to harmful effect on the three traits. The functional analysis revealed 26 genes enriched for 19 GO terms. Most of the GO terms found for biological processes, molecular functions and pathways were related to tissue development and the immune system. More phenotypes underlying these putative regions in this population could be the subject of future investigation. Tests to find putative lethal haplotype carriers could help breeders to eliminate them from the population or manage matings in order to avoid homozygous.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Feminino , Haplótipos/genética , Genótipo , Fenótipo , Alelos , Estudo de Associação Genômica Ampla
7.
Animals (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766249

RESUMO

The identification and selection of genetically superior animals for residual feed intake (RFI) could enhance productivity and minimize environmental impacts. The aim of this study was to use RNA-seq data to identify the differentially expressed genes (DEGs), known non-coding RNAs (ncRNAs), specific biomarkers and enriched biological processes associated with RFI of the liver in Nellore cattle in two genetic groups. In genetic group 1 (G1), 24 extreme RFI animals (12 low RFI (LRFI) versus 12 high RFI (HRFI)) were selected from a population of 60 Nellore bulls. The RNA-seq of the samples from their liver tissues was performed using an Illumina HiSeq 2000. In genetic group 2 (G2), 20 samples of liver tissue of Nellore bulls divergent for RFI (LRFI, n = 10 versus HRFI, n = 10) were selected from 83 animals. The raw data of the G2 were chosen from the ENA repository. A total of 1811 DEGs were found for the G1 and 2054 for the G2 (p-value ≤ 0.05). We detected 88 common genes in both genetic groups, of which 33 were involved in the immune response and in blocking oxidative stress. In addition, seven (B2M, ADSS, SNX2, TUBA4A, ARHGAP18, MECR, and ABCF3) possible gene biomarkers were identified through a receiver operating characteristic analysis (ROC) considering an AUC > 0.70. The B2M gene was overexpressed in the LRFI group. This gene regulates the lipid metabolism protein turnover and inhibits cell death. We also found non-coding RNAs in both groups. MIR25 was up-regulated and SNORD16 was down-regulated in the LRFI for G1. For G2, up-regulated RNase_MRP and SCARNA10 were found. We highlight MIR25 as being able to act by blocking cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage. The biological pathways associated with RFI of the liver in Nellore cattle in the two genetic groups were for energy metabolism, protein turnover, redox homeostasis and the immune response. The common transcripts, biomarkers and metabolic pathways found in the two genetic groups make this unprecedented work even more relevant, since the results are valid for different herds raised in different ways. The results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the liver tissue transcriptome of Nellore cattle.

8.
J Anim Breed Genet ; 140(2): 185-197, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36321505

RESUMO

Characterized by the incomplete development of the germinal epithelium of the seminiferous tubules, Testicular hypoplasia (TH) leads to decreased sperm concentration, increased morphological changes in sperm and azoospermia. Economic losses resulting from the disposal of affected bulls reduce the efficiency of meat production systems. A genome-wide association study and functional analysis were performed to identify genomic windows and the underlying positional candidate genes associated with TH in Nellore cattle. Phenotypic and pedigree data from 207,195 animals and genotypes (461,057 single nucleotide polymorphism, SNP) from 17,326 sires were used in this study. TH was evaluated as a binary trait measured at 18 months of age. A possible correlated response on TH resulting from the selection for scrotal circumference was evaluated by using a two-trait analysis. Thus, estimated breeding values were calculated by fitting a linear-threshold animal model in a Bayesian approach. The SNP effects were estimated using the weighted single-step genomic BLUP method. Twelve non-overlapping windows of 20 adjacent SNP that explained more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of the candidate genes identified genes (KHDRBS3, GPX5, STAR, ERLIN2), which might play an important role in the expression of TH due to their known roles in the spermatogenesis process, synthesis of steroids and lipid metabolism.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Bovinos/genética , Masculino , Animais , Estudo de Associação Genômica Ampla/veterinária , Teorema de Bayes , Sêmen/fisiologia , Espermatozoides , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Trop Anim Health Prod ; 54(5): 295, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100772

RESUMO

The aim of the present study was to use different models that include body composition phenotypes for the evaluation of residual feed intake (RFI) in Nellore bulls of different ages. Phenotypic and genotypic data of bulls that had participated in feed efficiency tests of a commercial (COM) and an experimental (EXP) herd between 2007 and 2019 were used. The mean entry age in the two herds was 645 and 279 days, respectively. The phenotypes were evaluated: rib eye area (REA), backfat thickness (BFT), residual feed intake (RFIKOCH), RFI adjusted for REA (RFIREA), RFI adjusted for BFT (RFIBFT), and RFI adjusted for REA and BFT (RFIREA BFT). The (co)variance components and prediction of genomic estimated breeding values (GEBV) were obtained by REML using ssGBLUP in single and two-trait analyses. Spearman's correlations were calculated based on the GEBV for RFIKOCH. The RFI phenotypes exhibited moderate heritability estimates in both herds (0.17 ± 0.03 to 0.27 ± 0.04). The genetic correlation between phenotypes was positive and high (0.99) in the two herds, a fact that permitted the creation of a single database (SDB). The heritability estimates of the SDB were also of moderate magnitude for the different definitions of RFI (0.19 ± 0.04 to 0.21 ± 0.04). The genetic correlations were positive and high between RFI traits 0.97 ± 0.01 to 0.99 ± 0.01), and positive and low/moderate between REA and BFT (0.01 ± 0.10 to 0.31 ± 0.12). The selection of animals based on the GEBV for RFIKOCH did not alter the ranking of individuals selected for RFIREA, RFIBFT, and RFIREA BFT. The results of the present study suggest that records of Nellore bulls of different ages and with different body compositions can be combined in a SDB for RFI calculation. Therefore, young animals can be evaluated in feed efficiency tests in order to reduce costs and the generation interval and possibly to obtain a higher response to selection.


Assuntos
Composição Corporal , Ingestão de Alimentos , Animais , Bovinos/genética , Ingestão de Alimentos/genética , Genoma , Masculino , Fenótipo , Costelas
10.
Front Genet ; 13: 834724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692843

RESUMO

This study aimed to perform a genome-wide association analysis (GWAS) using the Random Forest (RF) approach for scanning candidate genes for age at first calving (AFC) in Nellore cattle. Additionally, potential epistatic effects were investigated using linear mixed models with pairwise interactions between all markers with high importance scores within the tree ensemble non-linear structure. Data from Nellore cattle were used, including records of animals born between 1984 and 2015 and raised in commercial herds located in different regions of Brazil. The estimated breeding values (EBV) were computed and used as the response variable in the genomic analyses. After quality control, the remaining number of animals and SNPs considered were 3,174 and 360,130, respectively. Five independent RF analyses were carried out, considering different initialization seeds. The importance score of each SNP was averaged across the independent RF analyses to rank the markers according to their predictive relevance. A total of 117 SNPs associated with AFC were identified, which spanned 10 autosomes (2, 3, 5, 10, 11, 17, 18, 21, 24, and 25). In total, 23 non-overlapping genomic regions embedded 262 candidate genes for AFC. Enrichment analysis and previous evidence in the literature revealed that many candidate genes annotated close to the lead SNPs have key roles in fertility, including embryo pre-implantation and development, embryonic viability, male germinal cell maturation, and pheromone recognition. Furthermore, some genomic regions previously associated with fertility and growth traits in Nellore cattle were also detected in the present study, reinforcing the effectiveness of RF for pre-screening candidate regions associated with complex traits. Complementary analyses revealed that many SNPs top-ranked in the RF-based GWAS did not present a strong marginal linear effect but are potentially involved in epistatic hotspots between genomic regions in different autosomes, remarkably in the BTAs 3, 5, 11, and 21. The reported results are expected to enhance the understanding of genetic mechanisms involved in the biological regulation of AFC in this cattle breed.

11.
Metabolites ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629975

RESUMO

Beef is a source of essential fatty acids (EFA), linoleic (LA) and alpha-linolenic (ALA) acids, which protect against inflammatory and cardiovascular diseases in humans. However, the intramuscular EFA profile in cattle is a complex and polygenic trait. Thus, this study aimed to identify potential regulatory genes of the essential fatty acid profile in Longissimus thoracis of Nellore cattle finished in feedlot. Forty-four young bulls clustered in four groups of fifteen animals with extreme values for each FA were evaluated through differentially expressed genes (DEG) analysis and two co-expression methodologies (WGCNA and PCIT). We highlight the ECHS1, IVD, ASB5, and ERLIN1 genes and the TF NFIA, indicated in both FA. Moreover, we associate the NFYA, NFYB, PPARG, FASN, and FADS2 genes with LA, and the RORA and ELOVL5 genes with ALA. Furthermore, the functional enrichment analysis points out several terms related to FA metabolism. These findings contribute to our understanding of the genetic mechanisms underlying the beef EFA profile in Nellore cattle finished in feedlot.

12.
Anim Genet ; 53(3): 264-280, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384007

RESUMO

The beef fatty acid (FA) profile has the potential to impact human health, and displays polygenic and complex features. This study aimed to identify the transcriptomic FA profile in the longissimus thoracis muscle in Nellore beef cattle finished in feedlot. Forty-four young bulls were sampled to assess the beef FA profile by considering 14 phenotypes and including differentially expressed genes (DEG), co-expressed (COE), and differentially co-expressed genes (DCO) analyses. All samples (n = 44) were used for COE analysis, whereas 30 samples with extreme phenotypes for the beef FA profile were used for DEG and DCO. A total of 912 DEG were identified, and the polyunsaturated (n = 563) and unsaturated ω-3 (n = 346) FA sums groups were the most frequently observed. The COE analyses identified three modules, of which the blue module (n = 1776) was correlated with eight of 14 FA phenotypes. Also, 759 DCO genes were listed, and the oleic acid (n = 358) and monounsaturated fatty acids sum (n = 120) were the most frequent. Furthermore, 243 and 13, 319 and seven, and 173 and 12 gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were enriched respectively for the DEG, COE, and DCO analyses. Combining the results, we highlight the unexplored GIPC2, ASB5, and PPP5C genes in cattle. Besides LIPE and INSIG2 genes in COE modules, the ACSL3, ECI1, DECR2, FITM1, and SDHB genes were signaled in at least two analyses. These findings contribute to understand the genetic mechanisms underlying the beef FA profile in Nellore beef cattle finished in feedlot.


Assuntos
Ácidos Graxos , Transcriptoma , Animais , Bovinos/genética , Ácidos Graxos/análise , Masculino , Carne/análise , Músculo Esquelético/metabolismo , Fenótipo
13.
Funct Integr Genomics ; 22(4): 451-466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305194

RESUMO

The aim of this study was to identify mRNA isoforms and small genetic variants that may be affecting marbling and beef color in Nellore cattle. Longissimus thoracis muscle samples from 20 bulls with different phenotypes (out of 80 bulls set) for marbling (moderate (n = 10) and low (n = 10) groups) and beef color (desirable (n = 10) and undesirable (n = 9) group) traits were used to perform transcriptomic analysis using RNA sequencing. Fourteen and 15 mRNA isoforms were detected as differentially expressed (DE) (P-value ≤ 0.001) between divergent groups for marbling and meat color traits, respectively. Some of those DE mRNA isoforms have shown sites of splicing modified by small structural variants as single nucleotide variant (SNV), insertion, and/or deletion. Enrichment analysis identified metabolic pathways, such as O2/CO2 exchange in erythrocytes, tyrosine biosynthesis, and phenylalanine degradation. The results obtained suggest potential key regulatory genes associated with these economically important traits for the beef industry and for the consumer.


Assuntos
Carne , Isoformas de RNA , Animais , Bovinos/genética , Variação Genética , Masculino , Carne/análise , Músculo Esquelético/metabolismo , Fenótipo , Isoformas de RNA/análise , Isoformas de RNA/metabolismo , Análise de Sequência de RNA
14.
Animals (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049797

RESUMO

Increasing productivity through continued animal genetic improvement is a crucial part of implementing sustainable livestock intensification programs. In Zebu cattle, the lack of sexual precocity is one of the main obstacles to improving beef production efficiency. Puberty-related traits are complex, but large-scale data sets from different "omics" have provided information on specific genes and biological processes with major effects on the expression of such traits, which can greatly increase animal genetic evaluation. In addition, genetic parameter estimates and genomic predictions involving sexual precocity indicator traits and productive, reproductive, and feed-efficiency related traits highlighted the feasibility and importance of direct selection for anticipating heifer reproductive life. Indeed, the case study of selection for sexual precocity in Nellore breeding programs presented here show that, in 12 years of selection for female early precocity and improved management practices, the phenotypic means of age at first calving showed a strong decreasing trend, changing from nearly 34 to less than 28 months, with a genetic trend of almost -2 days/year. In this period, the percentage of early pregnancy in the herds changed from around 10% to more than 60%, showing that the genetic improvement of heifer's sexual precocity allows optimizing the productive cycle by reducing the number of unproductive animals in the herd. It has a direct impact on sustainability by better use of resources. Genomic selection breeding programs accounting for genotype by environment interaction represent promising tools for accelerating genetic progress for sexual precocity in tropical beef cattle.

15.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031806

RESUMO

Genomic prediction has become the new standard for genetic improvement programs, and currently, there is a desire to implement this technology for the evaluation of Angus cattle in Brazil. Thus, the main objective of this study was to assess the feasibility of evaluating young Brazilian Angus (BA) bulls and heifers for 12 routinely recorded traits using single-step genomic BLUP (ssGBLUP) with and without genotypes from American Angus (AA) sires. The second objective was to obtain estimates of effective population size (Ne) and linkage disequilibrium (LD) in the Brazilian Angus population. The dataset contained phenotypic information for up to 277,661 animals belonging to the Promebo breeding program, pedigree for 362,900, of which 1,386 were genotyped for 50k, 77k, and 150k single nucleotide polymorphism (SNP) panels. After imputation and quality control, 61,666 SNPs were available for the analyses. In addition, genotypes from 332 American Angus (AA) sires widely used in Brazil were retrieved from the AA Association database to be used for genomic predictions. Bivariate animal models were used to estimate variance components, traditional EBV, and genomic EBV (GEBV). Validation was carried out with the linear regression method (LR) using young-genotyped animals born between 2013 and 2015 without phenotypes in the reduced dataset and with records in the complete dataset. Validation animals were further split into progeny of BA and AA sires to evaluate if their progenies would benefit by including genotypes from AA sires. The Ne was 254 based on pedigree and 197 based on LD, and the average LD (±SD) and distance between adjacent single nucleotide polymorphisms (SNPs) across all chromosomes were 0.27 (±0.27) and 40743.68 bp, respectively. Prediction accuracies with ssGBLUP outperformed BLUP for all traits, improving accuracies by, on average, 16% for BA young bulls and heifers. The GEBV prediction accuracies ranged from 0.37 (total maternal for weaning weight and tick count) to 0.54 (yearling precocity) across all traits, and dispersion (LR coefficients) fluctuated between 0.92 and 1.06. Inclusion of genotyped sires from the AA improved GEBV accuracies by 2%, on average, compared to using only the BA reference population. Our study indicated that genomic information could help us to improve GEBV accuracies and hence genetic progress in the Brazilian Angus population. The inclusion of genotypes from American Angus sires heavily used in Brazil just marginally increased the GEBV accuracies for selection candidates.


There was a desire to implement genomic selection for Angus cattle in Brazil since the technology has been proved to increase genetic gain in animal breeding programs. Single-step genomic best linear unbiased prediction (ssGBLUP), which simultaneously combines pedigree and genomic information, was used to estimate individuals' genomic breeding values (GEBV) or genetic merit. Genomic selection can accelerate genetic progress by increasing accuracy, especially in young animals without progeny. The accuracy of GEBV can also be improved by combing data from other countries to increase the reference population (i.e., genotyped and phenotyped animals) in small, genotyped populations. Thus, the main objective of this study was to evaluate the accuracy of GEBV for young Brazilian Angus (BA) bulls and heifers with ssGBLUP, including or not the genotypes from American Angus sires. The accuracies with ssGBLUP were higher than those from traditional BLUP (EBV calculated from pedigree), improving accuracies by, on average, 16% for young bulls and heifers. Including genotypes from American Angus sires heavily used in Brazil just marginally increased the GEBV accuracies for selection candidates.


Assuntos
Bovinos , Genoma , Modelos Genéticos , Animais , Brasil , Bovinos/genética , Feminino , Genômica/métodos , Genótipo , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
Genome ; 65(4): 229-240, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34860606

RESUMO

Despite several studies on genetic markers and differentially expressed genes related to ribeye area (REA) and tenderness traits in beef cattle, there is divergence in the results regarding the genes associated with these traits. Thirteen genes associated with or exhibiting biological functions that might influence such phenotypes were included in this study. A total of five genes for REA (IGF-1, IGF-2, MSTN, NEDD4, and UBE4A) and eight genes for meat tenderness (CAPN1, CAPN2, CAST, HSPB1, DNAJA1, FABP4, SCD, and PRKAG3) were selected from previous studies on beef cattle. Genes and their respective proteins expression were validated in a commercial population of Nellore cattle using quantitative real-time PCR (RT-qPCR) and advanced mass spectrometry (LC/MS-MS) techniques, respectively. The MSTN gene was upregulated in animals with low REA. The CAPN1, CAPN2, CAST, HSPB1, and DNAJA1 genes were upregulated in animals with tough meat. The proteins translated by these genes were not differentially expressed. Our results confirm the potential of some of the studied genes as biomarkers for carcass and meat quality traits in Nellore cattle.


Assuntos
Carne , Carne Vermelha , Animais , Bovinos/genética , Marcadores Genéticos , Carne/análise , Fenótipo , Proteômica
17.
PLoS One ; 16(10): e0257964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648502

RESUMO

Enteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus). Performance, RFI and CH4 emission data were obtained from 489 animals participating in selection programs (mid-test age and body weight: 414±159 days and 356±135 kg, respectively) that were evaluated in 12 performance tests carried out in individual pens (n = 95) or collective paddocks (n = 394) equipped with electronic feed bunks. The sulfur hexafluoride tracer gas technique was used to measure daily CH4 emissions. The following variables were estimated: CH4 emission rate (g/day), residual methane emission and emission expressed per mid-test body weight, metabolic body weight, dry matter intake (CH4/DMI), average daily gain, and ingested gross energy (CH4/GE). Animals classified as negative RFI (RFI<0), i.e., more efficient animals, consumed less dry matter (P <0.0001) and emitted less g CH4/day (P = 0.0022) than positive RFI animals (RFI>0). Nonetheless, more efficient animals emitted more CH4/DMI and CH4/GE (P < 0.0001), suggesting that the difference in daily intake between animals is a determinant factor for the difference in daily enteric CH4 emissions. In addition, animals classified as negative RFI emitted less CH4 per kg mid-test weight and metabolic weight (P = 0.0096 and P = 0.0033, respectively), i.e., most efficient animals could emit less CH4 per kg of carcass. In conclusion, more efficient animals produced less methane when expressed as g/day and per kg mid-test weight than less efficient animals, suggesting lower emissions per kg of carcass produced. However, it is not possible to state that feed efficiency has a direct effect on enteric CH4 emissions since emissions per kg of consumed dry matter and the percentage of gross energy lost as CH4 are higher for more efficient animals.


Assuntos
Ingestão de Alimentos/fisiologia , Metano/metabolismo , Fenótipo , Desempenho Físico Funcional , Aumento de Peso/fisiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Brasil , Bovinos , Dieta/veterinária , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Trato Gastrointestinal/metabolismo , Masculino
18.
J Appl Genet ; 62(4): 655-659, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34145524

RESUMO

Scrotal circumference (SC) is a commonly used trait related to sexual precocity in bulls. Genome-wide association studies have uncovered a lot of genes related to this trait, however, only those present on autosomes. The inclusion of the second biggest chromosome (BTAX) can improve the knowledge of the genetic architecture of this trait. In this study, we performed a weighted, single-step, genome-wide association study using a 777 k BovineHD BeadChip (IllumHD) to analyze the association between SNPs and SC in Brazilian Nelore cattle. Phenotypes from 79,300 males and 3263 genotypes (2017 from females and 1246 from males)-(39,367 SNPs markers located at ChrX) were used. We identified eight regions on chromosome X that displayed important associations with SC. The results showed that together the genomic windows explained 28.52% of the genetic variance for the examined trait. Genes with potential functions in reproduction and fertility regulation were highlighted as candidates for sexual precocity rates in Nelore cattle (AFF2 and PJA1). Moreover, we found 10 genes that had not previously been identified as being associated with sexual precocity traits in cattle. These findings will further advance our understanding of the genetic architecture, considering mainly the presence of the chromosome X, for indicine cattle reproductive traits, being useful in the context of genomic prediction in beef cattle.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Genômica , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Cromossomo X/genética
19.
Trop Anim Health Prod ; 53(3): 349, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101031

RESUMO

The objective of this study was to evaluate the accuracy of genomic predictions of growth traits in Nellore cattle. Data from 5064 animals belonging to farms that participate in the Conexão DeltaGen and PAINT breeding programs were used. Genotyping was performed with the Illumina BovineHD BeadChip (777,962 SNPs). After quality control of the genomic data, 412,993 SNPs were used. Deregressed EBVs (DEBVs) were calculated using the estimated breeding values (EBVs) and accuracies of birth weight (BW), weight gain from birth to weaning (GBW), postweaning weight gain (PWG), yearling height (YH), and cow weight (CW) provided by GenSys. Three models were used to estimate marker effects: genomic best linear unbiased prediction (GBLUP), BayesCπ, and improved Bayesian least absolute shrinkage and selection operator (IBLASSO). The prediction ability of genomic estimated breeding value (GEBVs) was estimated by the average Pearson correlation between DEBVs and GEBVs, predicted with the different methodologies in the validation populations. The regression coefficients of DEBVs on GEBVs in the validation population were calculated and used as indicators of prediction bias of GEBV. In general, the Bayesian methods provided slightly more accurate predictions of genomic breeding values than GBLUP. The BayesCπ and IBLASSO were similar for all traits (BW, GBW, PWG, and YH), except for CW. Thus, there does not seem to be a more suitable method for the estimation of SNP effects and genomic breeding values. Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions.


Assuntos
Genoma , Genômica , Animais , Teorema de Bayes , Bovinos/genética , Feminino , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Genome ; 64(10): 893-899, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057850

RESUMO

The aim of this study was to evaluate the accuracy of imputation in a Gyr population using two medium-density panels (Bos taurus - Bos indicus) and to test whether the inclusion of the Nellore breed increases the imputation accuracy in the Gyr population. The database consisted of 289 Gyr females from Brazil genotyped with the GGP Bovine LDv4 chip containing 30 000 SNPs and 158 Gyr females from Colombia genotyped with the GGP indicus chip containing 35 000 SNPs. A customized chip was created that contained the information of 9109 SNPs (9K) to test the imputation accuracy in Gyr populations; 604 Nellore animals with information of LD SNPs tested in the scenarios were included in the reference population. Four scenarios were tested: LD9K_30KGIR, LD9K_35INDGIR, LD9K_30KGIR_NEL, and LD9K_35INDGIR_NEL. Principal component analysis (PCA) was computed for the genomic matrix and sample-specific imputation accuracies were calculated using Pearson's correlation (CS) and the concordance rate (CR) for imputed genotypes. The results of PCA of the Colombian and Brazilian Gyr populations demonstrated the genomic relationship between the two populations. The CS and CR ranged from 0.88 to 0.94 and from 0.93 to 0.96, respectively. Among the scenarios tested, the highest CS (0.94) was observed for the LD9K_30KGIR scenario. The present results highlight the importance of the choice of chip for imputation in the Gyr breed. However, the variation in SNPs may reduce the imputation accuracy even when the chip of the Bos indicus subspecies is used.


Assuntos
Bovinos , Genômica , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Bovinos/genética , Feminino , Genoma , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA