Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132.842
Filtrar
1.
Methods Mol Biol ; 2852: 223-253, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235748

RESUMEN

One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.


Asunto(s)
Bacterias , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Humanos , Bacterias/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/genética , Variación Genética , Genoma Bacteriano , Estudio de Asociación del Genoma Completo/métodos , Fenotipo
2.
Parasitol Res ; 123(9): 320, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254766

RESUMEN

Cutaneous leishmaniasis (CL) stands out as a significant vector-borne endemic in Pakistan. Despite the rising incidence of CL, the genetic diversity of Leishmania species in the country's endemic regions remains insufficiently explored. This study aims to uncover the genetic diversity and molecular characteristics of Leishmania species in CL-endemic areas of Baluchistan, Khyber Pakhtunkhwa (KPK), and Punjab in Pakistan. Clinical samples from 300 CL patients were put to microscopic examination, real-time ITS-1 PCR, and sequencing. Predominantly affecting males between 16 to 30 years of age, with lesions primarily on hands and faces, the majority presented with nodular and plaque types. Microscopic analysis revealed a positivity rate of 67.8%, while real-time PCR identified 60.98% positive cases, mainly L. tropica, followed by L. infantum and L. major. Leishmania major (p = 0.009) showed substantially greater variation in nucleotide sequences than L. tropica (p = 0.07) and L. infantum (p = 0.03). Nucleotide diversity analysis indicated higher diversity in L. major and L. infantum compared to L. tropica. This study enhances our understanding of CL epidemiology in Pakistan, stressing the crucial role of molecular techniques in accurate species identification. The foundational data provided here emphasizes the necessity for future research to investigate deeper into genetic diversity and its implications for CL control at both individual and community levels.


Asunto(s)
Variación Genética , Leishmaniasis Cutánea , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/parasitología , Pakistán/epidemiología , Humanos , Masculino , Adolescente , Adulto , Femenino , Adulto Joven , Niño , Persona de Mediana Edad , Leishmania/genética , Leishmania/clasificación , Leishmania/aislamiento & purificación , Preescolar , Análisis de Secuencia de ADN , Leishmania tropica/genética , Leishmania tropica/aislamiento & purificación , Leishmania tropica/clasificación , Leishmania major/genética , Leishmania major/clasificación , Leishmania major/aislamiento & purificación , ADN Protozoario/genética , Filogenia , Epidemiología Molecular , Anciano , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Vet Parasitol Reg Stud Reports ; 54: 101067, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39237224

RESUMEN

Cryptosporidiosis has previously been reported in animals, humans, and water sources in the United Arab Emirates (UAE). However, most reports were only to the genus level, or generically identified as cryptosporidiosis. We aimed to investigate the genetic diversity of Cryptosporidium species occurring in diarrhetic ungulates which were brought to the Central Veterinary Research Laboratory (CVRL) in Dubai. Using a combination of microscopic and molecular methods, we identified five species of Cryptosporidium occurring among ungulates in the UAE, namely C. parvum, C. hominis, C. xiaoi, C. meleagridis, and C. equi. Cryptosporidium parvum was the most prevalent species in our samples. Furthermore, we identified subtypes of C. parvum and C. hominis, which are involved in both human and animal cryptosporidiosis. This is also the first reported occurrence of Cryptosporidium spp. in the Arabian Tahr, to our knowledge. Since the animals examined were all in contact with humans, the possibility of zoonotic spread is possible. Our study correlates with previous reports in the region, building upon the identification of Cryptosporidium sp. However, there is a need to further investigate the endemic populations of Cryptosporidium, including more hosts, sampling asymptomatic animals, and location data.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Diarrea , Variación Genética , Emiratos Árabes Unidos/epidemiología , Animales , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Cryptosporidium/clasificación , Cryptosporidium/aislamiento & purificación , Diarrea/veterinaria , Diarrea/parasitología , Diarrea/epidemiología , Heces/parasitología , Bovinos , Filogenia , Cabras/parasitología , ADN Protozoario/genética
4.
Mol Biol Rep ; 51(1): 963, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235569

RESUMEN

BACKGROUND: Bovine leukocyte adhesion deficiency (BLAD), bovine citrullinemia (BC), and deficiency of Uridine monophosphate synthetase (DUMPS) are the common autosomal recessive disorders affecting the global dairy industry. BLAD leads to poor wound healing and recurrent infections. In BC, ammonia builds up leading to neurological disorders and death. DUMPS results in developmental abnormalities. METHODOLOGY: In this study, tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS PCR) based diagnostic tests were optimized for BLAD, BC, and DUMPS. A total of 250 animals (58 indigenous and 192 Holstein Friesian (HF)) were screened from all across Pakistan. In addition to validation of ARMS-PCR results through Sanger sequencing, the protein modeling provided structural insights of the disease-associated reported SNPs. Pathway analysis illustrated gene functions under normal and mutated conditions. Furthermore, haplotype and phylogenetic analysis of ASS1 (Argininosuccinate synthetase) gene were performed on study samples and NCBI retrieved sequences. RESULTS: The study's focus was to screen the herds for prevalence of carriers of genetic disorders, as they are the main source of disease dissemination. One animal was found carrier for BC, whereas no carriers were found for BLAD and DUMPS. The protein models corroborated the reported amino acid change in BLAD, and protein truncation in both BC and DUMPS proteins. SNPs found in NCBI retrieved sequences were either silent or missense and had no effect on protein structure. DNA network presented graphical illustration of haplotype interactions and phylogenetic analysis conferred evolutionary landscape of ASS1 gene. The combination of these approaches produced an in-depth genetic picture of BC in Pakistani cattle. CONCLUSION: The development of diagnostic tests and identification of the heterozygous BC sample underscores the significance of constant monitoring to avoid the unwanted dissemination of mutant alleles among Pakistani cattle, thereby promoting the general well-being and sustainability of the dairy sector.


Asunto(s)
Enfermedades de los Bovinos , Polimorfismo de Nucleótido Simple , Animales , Bovinos , Pakistán , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/diagnóstico , Polimorfismo de Nucleótido Simple/genética , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Síndrome de Deficiencia de Adhesión del Leucocito/diagnóstico , Síndrome de Deficiencia de Adhesión del Leucocito/veterinaria , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Haplotipos/genética , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Variación Genética/genética , Mutación/genética
5.
Front Immunol ; 15: 1446081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238643

RESUMEN

The regulatory serine protease, complement factor I (FI), in conjunction with one of its cofactors (FH, C4BP, MCP, or CR1), plays an essential role in controlling complement activity through inactivation of C3b and C4b. The functional impact by missense variants in the CFI gene, particularly those with minor allele frequencies of 0.01% to 0.1%, is infrequently studied. As such, these variants are typically classified as variants of uncertain significance (VUS) when they are identified by clinical testing. Herein, we utilized a minigene splicing assay to assess the functional impact of 36 ultra-rare variants of CFI. These variants were selected based on their minor allele frequencies (MAF) and their association with low-normal FI levels. Four variants lead to aberrant splicing-one 5' consensus splice site (NM_000204.5: c.1429G>C, p.Asp477His) and three exonic changes (c.355G>A, p.Gly119Arg; c.472G>A, p.Gly158Arg; and c.950G>A, p.Arg317Gln)-enabling their reclassification to likely pathogenic (LP) or pathogenic (P) based on ACMG guidelines. These findings underscore the value of functional assays, such as the minigene assay, in assessing the clinical relevance of rare variants in CFI.


Asunto(s)
Factor I de Complemento , Humanos , Factor I de Complemento/genética , Frecuencia de los Genes , Empalme del ARN , Mutación Missense , Femenino , Masculino , Variación Genética
6.
Elife ; 122024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239703

RESUMEN

The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an 'effective population size' is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.


Evolution is the process through which populations change over time, starting with mutations in the genetic sequence of an organism. Many of these mutations harm the survival and reproduction of an organism, but only by a very small amount. Some species, especially those with large populations, can purge these slightly harmful mutations more effectively than other species. This fact has been used by the 'drift barrier theory' to explain various profound differences amongst species, including differences in biological complexity. In this theory, the effectiveness of eliminating slightly harmful mutations is specified by an 'effective' population size, which depends on factors beyond just the number of individuals in the population. Effective population size is normally calculated from the amount of time a 'neutral' mutation (one with no effect at all) stays in the population before becoming lost or taking over. Estimating this time requires both representative data for genetic diversity and knowledge of the mutation rate. A major limitation is that these data are unavailable for most species. A second limitation is that a brief, temporary reduction in the number of individuals has an oversized impact on the metric, relative to its impact on the number of slighly harmful mutations accumulated. Weibel, Wheeler et al. developed a new metric to more directly determine how effectively a species purges slightly harmful mutations. Their approach is based on the fact that the genetic code has 'synonymous' sequences. These sequences code for the same amino acid building block, with one of these sequences being only slightly preferred over others. The metric by Weibel, Wheeler et al. quantifies the proportion of the genome from which less preferred synonymous sequences have been effectively purged. It judges a population to have a higher effective population size when the usage of synonymous sequences departs further from the usage predicted from mutational processes. The researchers expected that natural selection would favour 'ordered' proteins with robust three-dimensional structures, i.e., that species with a higher effective population size would tend to have more ordered versions of a protein. Instead, they found the opposite: species with a higher effective population size tend to have more disordered versions of the same protein. This changes our view of how natural selection acts on proteins. Why species are so different remains a fundamental question in biology. Weibel, Wheeler et al. provide a useful tool for future applications of drift barrier theory to a broad range of ways that species differ.


Asunto(s)
Evolución Molecular , Selección Genética , Vertebrados , Animales , Vertebrados/genética , Dominios Proteicos , Codón/genética , Variación Genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química
7.
BMC Vet Res ; 20(1): 395, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242520

RESUMEN

BACKGROUND: Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in various animal species, including goats. So far, only limited knowledge of phenotypic and genotypic properties of T. pyogenes isolates from goats has been gathered. In our study, we characterized the phenotypic and genotypic properties of caprine T. pyogenes isolates and established their relationship by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). RESULTS: From 2015 to 2023, 104 T. pyogenes isolates were obtained from 1146 clinical materials. In addition, two T. pyogenes isolates were obtained from 306 swabs collected from healthy goats. A total of 51 T. pyogenes isolates were subjected to detailed phenotypic and genotypic characterization. The virulence genotype plo/nanH/nanP/fimA/fimC/luxS was predominant. All of the tested isolates showed the ability to form a biofilm but with different intensities, whereby most of them were classified as strong biofilm formers (72.5%). The high level of genetic diversity among tested caprine T. pyogenes isolates (19 different RAPD profiles) was observed. The same RAPD profiles were found for isolates obtained from one individual, as well as from other animals in the same herd, but also in various herds. CONCLUSIONS: This study provided important data on the occurrence of T. pyogenes infections in goats. The assessment of virulence properties and genetic relationships of caprine T. pyogenes isolates contributed to the knowledge of the epidemiology of infections caused by this pathogen in small ruminants. Nevertheless, further investigations are warranted to clarify the routes of transmission and dissemination of the pathogen.


Asunto(s)
Actinomycetaceae , Infecciones por Actinomycetales , Variación Genética , Enfermedades de las Cabras , Cabras , Técnica del ADN Polimorfo Amplificado Aleatorio , Animales , Enfermedades de las Cabras/microbiología , Enfermedades de las Cabras/epidemiología , Virulencia/genética , Actinomycetaceae/genética , Actinomycetaceae/patogenicidad , Actinomycetaceae/aislamiento & purificación , Actinomycetaceae/clasificación , Infecciones por Actinomycetales/veterinaria , Infecciones por Actinomycetales/microbiología , Genotipo , Biopelículas/crecimiento & desarrollo
8.
Nat Commun ; 15(1): 7812, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242612

RESUMEN

Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.


Asunto(s)
Bacteriemia , Infecciones Estreptocócicas , Streptococcus mitis , Humanos , Streptococcus mitis/genética , Streptococcus mitis/aislamiento & purificación , Reino Unido/epidemiología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/epidemiología , Irlanda/epidemiología , Bacteriemia/microbiología , Bacteriemia/epidemiología , Endocarditis/microbiología , Endocarditis/epidemiología , Genoma Bacteriano/genética , Secuenciación Completa del Genoma , Masculino , Femenino , Variación Genética , Genómica , Anciano , Filogenia , Persona de Mediana Edad , Farmacorresistencia Bacteriana/genética , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/epidemiología , Adulto , Factores de Virulencia/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Virulencia/genética
9.
BMC Plant Biol ; 24(1): 834, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242997

RESUMEN

Conservation and management of medicinally important plants are among the necessary tasks all over the world. The genus Dracocephalum (Lamiaceae) contains about 186 perennials, or annual herb species that have been used for their medicinal values in different parts of the world as an antihyperlipidemic, analgesic, antimicrobial, antioxidant, as well as anticancer medicine. Producing detailed data on the genetic structure of these species and their response against climate change and human landscape manipulation can be very important for conservation purposes. Therefore, the present study was performed on six geographical populations of two species in the Dracocephalum genus, namely, Dracocephalum kotschyi, and Dracocephalum oligadenium, as well as their inter-specific hybrid population. We carried out, population genetic study, landscape genetics, species modeling, and genetic cline analyses on these plants. We present here, new findings on the genetic structure of these populations, and provide data on both geographical and genetic clines, as well as morphological clines. We also identified genetic loci that are potentially adaptive to the geographical spatial features and genocide conditions. Different species distribution modeling (SDM) methods, used in this work revealed that bioclimatic variables related to the temperature and moisture, play an important role in Dracocephalum population's geographical distribution within IRAN and that due to the presence of some potentially adaptive genetic loci in the studied plants, they can survive well enough by the year 2050 and under climate change. The findings can be used for the protection of these medicinally important plant.


Asunto(s)
Lamiaceae , Lamiaceae/genética , Hibridación Genética , Variación Genética , Geografía , Genética de Población
10.
BMC Bioinformatics ; 25(1): 295, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243022

RESUMEN

BACKGROUND: A variant can be pathogenic or benign with relation to a human disease. Current classification categories from benign to pathogenic reflect a probabilistic summary of the current understanding. A primary metric of clinical utility for multiplexed assays of variant effect (MAVE) is the number of variants that can be reclassified from uncertain significance (VUS). However, a gap in this measure of utility is that it underrepresents the information gained from MAVEs. The aim of this study was to develop an improved quantification metric for MAVE utility. We propose adopting an information content approach that includes data that does not reclassify variants will better reflect true information gain. We adopted an information content approach to evaluate the information gain, in bits, for MAVEs of BRCA1, PTEN, and TP53. Here, one bit represents the amount of information required to completely classify a single variant starting from no information. RESULTS: BRCA1 MAVEs produced a total of 831.2 bits of information, 6.58% of the total missense information in BRCA1 and a 22-fold increase over the information that only contributed to VUS reclassification. PTEN MAVEs produced 2059.6 bits of information which represents 32.8% of the total missense information in PTEN and an 85-fold increase over the information that contributed to VUS reclassification. TP53 MAVEs produced 277.8 bits of information which represents 6.22% of the total missense information in TP53 and a 3.5-fold increase over the information that contributed to VUS reclassification. CONCLUSIONS: An information content approach will more accurately portray information gained through MAVE mapping efforts than by counting the number of variants reclassified. This information content approach may also help define the impact of guideline changes that modify the information definitions used to classify groups of variants.


Asunto(s)
Proteína BRCA1 , Fosfohidrolasa PTEN , Proteína p53 Supresora de Tumor , Humanos , Fosfohidrolasa PTEN/genética , Proteína BRCA1/genética , Proteína p53 Supresora de Tumor/genética , Variación Genética , Biología Computacional/métodos
11.
BMC Microbiol ; 24(1): 326, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243017

RESUMEN

BACKGROUND: ​​The genus Fusarium poses significant threats to food security and safety worldwide because numerous species of the fungus cause destructive diseases and/or mycotoxin contamination in crops. The adverse effects of climate change are exacerbating some existing threats and causing new problems. These challenges highlight the need for innovative solutions, including the development of advanced tools to identify targets for control strategies. DESCRIPTION: In response to these challenges, we developed the Fusarium Protein Toolkit (FPT), a web-based tool that allows users to interrogate the structural and variant landscape within the Fusarium pan-genome. The tool displays both AlphaFold and ESMFold-generated protein structure models from six Fusarium species. The structures are accessible through a user-friendly web portal and facilitate comparative analysis, functional annotation inference, and identification of related protein structures. Using a protein language model, FPT predicts the impact of over 270 million coding variants in two of the most agriculturally important species, Fusarium graminearum and F. verticillioides. To facilitate the assessment of naturally occurring genetic variation, FPT provides variant effect scores for proteins in a Fusarium pan-genome based on 22 diverse species. The scores indicate potential functional consequences of amino acid substitutions and are displayed as intuitive heatmaps using the PanEffect framework. CONCLUSION: FPT fills a knowledge gap by providing previously unavailable tools to assess structural and missense variation in proteins produced by Fusarium. FPT has the potential to deepen our understanding of pathogenic mechanisms in Fusarium, and aid the identification of genetic targets for control strategies that reduce crop diseases and mycotoxin contamination. Such targets are vital to solving the agricultural problems incited by Fusarium, particularly evolving threats resulting from climate change. Thus, FPT has the potential to contribute to improving food security and safety worldwide.


Asunto(s)
Proteínas Fúngicas , Fusarium , Internet , Fusarium/genética , Fusarium/metabolismo , Fusarium/clasificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Variación Genética , Modelos Moleculares , Programas Informáticos , Conformación Proteica
12.
Orphanet J Rare Dis ; 19(1): 327, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243101

RESUMEN

The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.


Asunto(s)
Enfermedades Raras , Humanos , Enfermedades Raras/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Variación Genética/genética
13.
BMC Plant Biol ; 24(1): 843, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244564

RESUMEN

Zanthoxylum is a versatile economic tree species utilized for its spice, seasoning, oil, medicinal, and industrial raw material applications, and it has a lengthy history of cultivation and domestication in China. This has led to the development of numerous cultivars. However, the phenomenon of mixed cultivars and confusing names has significantly obstructed the effective utilization of Zanthoxylum resources and industrial development. Consequently, conducting genetic diversity studies and cultivar identification on Zanthoxylum are crucial. This research analyzed the genetic traits of 80 Zanthoxylum cultivars using simple sequence repeat (SSR) and inter-Primer Binding Site (iPBS) molecular markers, leading to the creation of a DNA fingerprint. This study identified 206 and 127 alleles with 32 SSR markers and 10 iPBS markers, respectively, yielding an average of 6.4 and 12.7 alleles (Na) per marker. The average polymorphism information content (PIC) for the SSR and iPBS markers was 0.710 and 0.281, respectively. The genetic similarity coefficients for the 80 Zanthoxylum accessions ranged from 0.0947 to 0.9868 and from 0.2206 to 1.0000, with mean values of 0.3864 and 0.5215, respectively, indicating substantial genetic diversity. Cluster analysis, corroborated by principal coordinate analysis (PCoA), categorized these accessions into three primary groups. Analysis of the genetic differentiation among the three Zanthoxylum (Z. bungeanum, Z. armatum, and Z. piperitum) populations using SSR markers revealed a mean genetic differentiation coefficient (Fst) of 0.335 and a gene flow (Nm) of 0.629, suggesting significant genetic divergence among the populations. Molecular variance analysis (AMOVA) indicated that 65% of the genetic variation occurred within individuals, while 35% occurred among populations. Bayesian model-based analysis of population genetic structure divided all materials into two groups. The combined PI and PIsibs value of the 32 SSR markers were 4.265 × 10- 27 and 1.282 × 10- 11, respectively, showing strong fingerprinting power. DNA fingerprints of the 80 cultivars were established using eight pairs of SSR primers, each assigned a unique numerical code. In summary, while both markers were effective at assessing the genetic diversity and relationships of Zanthoxylum species, SSR markers demonstrated superior polymorphism and cultivar discrimination compared to iPBS markers. These findings offer a scientific foundation for the conservation and sustainable use of Zanthoxylum species.


Asunto(s)
Dermatoglifia del ADN , Variación Genética , Repeticiones de Microsatélite , Zanthoxylum , Zanthoxylum/genética , Repeticiones de Microsatélite/genética , Marcadores Genéticos , Filogenia , ADN de Plantas/genética , Polimorfismo Genético , Alelos , Sitios de Unión
14.
BMC Genomics ; 25(1): 841, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244600

RESUMEN

In forensic genetics, utilizing massively parallel sequencing (MPS) to analyze short tandem repeats (STRs) has demonstrated several advantages compared to conventional capillary electrophoresis (CE). Due to the current technical limitations, although flanking region polymorphisms had been mentioned in several previous studies, most studies focused on the core repeat regions of STRs or the variations in the adjacent flanking regions. In this study, we developed an MPS system consisting of two sets of multiplex PCR systems to detect not only the STR core repeat regions but also to observe variants located at relatively distant positions in the flanking regions. The system contained 42 commonly used forensic STRs, including 21 autosomal STRs (A-STRs) and 21 Y-chromosomal STRs (Y-STRs), and a total of 350 male individuals from a Chinese Han population were genotyped. The length and sequence variants per locus were tallied and categorized based on length (length-based, LB), sequence without flanking region (core repeat regions sequence-based, RSB), and sequence with flanking region (core repeat and flanking regions sequence-based, FSB), respectively. Allele frequencies, Y-haplotype frequencies, and forensic parameters were calculated based on LB, RSB, and FSB, respectively, to evaluate the improvement in discrimination power, heterozygosity, and effectiveness of forensic systems. The results suggested the sequence variations have more influence on A-STRs and could improve the identification ability of MPS-STR genotyping. Concordance between MPS and CE methods was confirmed by using commercial CE-based STR kits. The impact of flanking region variations on STR genotype analysis and potential factors contributing to discordances were discussed. A total of 58 variations in the flanking regions (53 SNPs/SNVs and 5 InDels) were observed and most variations (48/58) were distributed in A-STRs. In summary, this study delved deeper into the genetic information of forensic commonly used STR and advanced the application of massively parallel sequencing in forensic genetics.


Asunto(s)
Cromosomas Humanos Y , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Humanos , Cromosomas Humanos Y/genética , Masculino , Genética Forense/métodos , Haplotipos , Variación Genética , Genotipo
15.
Commun Biol ; 7(1): 1102, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244637

RESUMEN

Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.


Asunto(s)
Fusobacterium , Genoma Bacteriano , Genómica , Filogenia , Fusobacterium/genética , Fusobacterium/clasificación , Genómica/métodos , Variación Genética , Humanos , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/genética
16.
Curr Opin Genet Dev ; 88: 102256, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217658

RESUMEN

The genetic differences underlying unique phenotypes in humans compared to our closest primate relatives have long remained a mystery. Similarly, the genetic basis of adaptations between human groups during our expansion across the globe is poorly characterized. Uncovering the downstream phenotypic consequences of these genetic variants has been difficult, as a substantial portion lies in noncoding regions, such as cis-regulatory elements (CREs). Here, we review recent high-throughput approaches to measure the functions of CREs and the impact of variation within them. CRISPR screens can directly perturb CREs in the genome to understand downstream impacts on gene expression and phenotypes, while massively parallel reporter assays can decipher the regulatory impact of sequence variants. Machine learning has begun to be able to predict regulatory function from sequence alone, further scaling our ability to characterize genome function. Applying these tools across diverse phenotypes, model systems, and ancestries is beginning to revolutionize our understanding of noncoding variation underlying human evolution.


Asunto(s)
Evolución Molecular , Genoma Humano , Humanos , Variación Genética , Animales , Secuencias Reguladoras de Ácidos Nucleicos/genética , Fenotipo , Aprendizaje Automático
17.
BMC Genomics ; 25(1): 825, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223457

RESUMEN

BACKGROUND: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. METHODS: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed a genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. RESULTS: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. CONCLUSIONS: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Fumar , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Fumar/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Sitios de Carácter Cuantitativo , Fenotipo , Polimorfismo de Nucleótido Simple , Variación Genética
18.
Nat Commun ; 15(1): 7114, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237504

RESUMEN

Culturing and genomic sequencing of Mycobacterium tuberculosis (MTB) from tuberculosis (TB) cases is the basis for many research and clinical applications. The alternative, culture-free sequencing from diagnostic samples, is promising but poses challenges to obtain and analyse the MTB genome. Paradoxically, culture is assumed to impose a diversity bottleneck, which, if true, would entail unexplored consequences. To unravel this paradox we generate high-quality genomes of sputum-culture pairs from two different settings after developing a workflow for sequencing from sputum and a tailored bioinformatics analysis. Careful downstream comparisons reveal sources of sputum-culture incongruences due to false positive/negative variation associated with factors like low input MTB DNA or variable genomic depths. After accounting for these factors, contrary to the bottleneck dogma, we identify a 97% variant agreement within sputum-culture pairs, with a high correlation also in the variants' frequency (0.98). The combined analysis from five different settings and more than 100 available samples shows that our results can be extrapolated to different TB epidemic scenarios, demonstrating that for the cases tested culture accurately mirrors clinical samples.


Asunto(s)
Variación Genética , Mycobacterium tuberculosis , Esputo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Humanos , Tuberculosis/microbiología , Tuberculosis/diagnóstico , Genoma Bacteriano , ADN Bacteriano/genética , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/diagnóstico
19.
Parasites Hosts Dis ; 62(3): 313-322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39218630

RESUMEN

Plasmodium vivax variant interspersed repeats (vir) refer to the key protein used for escaping the host immune system. Knowledge in the genetic variation of vir genes can be used for the development of vaccines or diagnostic methods. Therefore, we evaluated the genetic diversity of the vir genes of P. vivax populations of several Asian countries, including Pakistan, which is a malaria-endemic country experiencing a significant rise in malaria cases in recent years. We analyzed the genetic diversity and population structure of 4 vir genes (vir 4, vir 12, vir 21, and vir 27) in the Pakistan P. vivax population and compared these features to those of the corresponding vir genes in other Asian countries. In Pakistan, vir 4 (S=198, H=9, Hd=0.889, Tajima's D value=1.12321) was the most genetically heterogenous, while the features of vir 21 (S=8, H=7, Hd=0.664, Tajima's D value =-0.63763) and vir 27 (S =25, H =11, Hd =0.682, Tajima's D value=-2.10836) were relatively conserved. Additionally, vir 4 was the most genetically diverse among Asian P. vivax populations, although within population diversity was low. Meanwhile, vir 21 and vir 27 among all Asian populations were closely related genetically. Our findings on the genetic diversity of vir genes and its relationships between populations in diverse geographical locations contribute toward a better understanding of the genetic characteristics of vir. The high level of genetic diversity of vir 4 suggests that this gene can be a useful genetic marker for understanding the P. vivax population structure. Longitudinal genetic diversity studies of vir genes in P. vivax isolates obtained from more diverse geographical areas are needed to better understand the function of vir genes and their use for the development of malaria control measures, such as vaccines.


Asunto(s)
Variación Genética , Malaria Vivax , Plasmodium vivax , Plasmodium vivax/genética , Pakistán/epidemiología , Variación Genética/genética , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Malaria Vivax/genética , Genética de Población , Proteínas Protozoarias/genética
20.
Anim Biotechnol ; 35(1): 2396421, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39222128

RESUMEN

The synthesis of fatty acids plays a critical role in shaping milk production characteristics in dairy cattle. Thus, identifying effective haplotypes within the fatty acid metabolism pathway will provide novel and robust insights into the genetics of dairy cattle. This study aimed to comprehensively examine the individual and combined impacts of fundamental genes within the fatty acid metabolic process pathway in Jersey cows. A comprehensive phenotypic dataset was compiled, considering milk production traits, to summarize a cow's productivity across three lactations. Genotyping was conducted through PCR-RFLP and Sanger sequencing, while the association between genotype and phenotype was quantified using linear mixed models. Moderate biodiversity and abundant variation suitable for haplotype analysis were observed across all examined markers. The individual effects of the FABP3, LTF and ANXA9 genes significantly influenced both milk yield and milk fat production. Additionally, this study reveals novel two-way interactions between genes in the fatty acid metabolism pathway that directly affect milk fat properties. Notably, we identified that the GGAAGG haplotype in FABP3×LTF×ANXA9 interaction may be a robust genetic marker concerning both milk fat yield and percentage. Consequently, the genotype combinations highlighted in this study serve as novel and efficient markers for assessing the fat content in cow's milk.


Asunto(s)
Ácidos Grasos , Lactancia , Leche , Animales , Bovinos/genética , Bovinos/fisiología , Ácidos Grasos/metabolismo , Leche/química , Leche/metabolismo , Femenino , Lactancia/genética , Haplotipos , Variación Genética , Genotipo , Fenotipo , Proteína 3 de Unión a Ácidos Grasos/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Anexinas/genética , Anexinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA