Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.532
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2405560121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231206

RESUMEN

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.


Asunto(s)
Cadherinas , Movimiento Celular , Receptores ErbB , Fosforilación , Movimiento Celular/fisiología , Cadherinas/metabolismo , Receptores ErbB/metabolismo , Viscosidad , Humanos , Animales , Uniones Adherentes/metabolismo , Perros
2.
Nat Commun ; 15(1): 7734, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232006

RESUMEN

The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery. Here, we use proximity proteomics to illuminate how the VE-cadherin interactome changes during junctional reorganization from dis-continuous to continuous junctions, triggered by the lymphangiogenic factor adrenomedullin. These analyses identified interactors that reveal roles for ADP ribosylation factor 6 (ARF6) and the exocyst complex in VE-cadherin trafficking and recycling. We also identify a requisite role for VE-cadherin in the in vitro and in vivo control of secretion of reelin-a lymphangiocrine glycoprotein with recently appreciated roles in governing heart development and injury repair. This VE-cadherin protein interactome shines light on mechanisms that control adherens junction remodeling and secretion from lymphatic endothelial cells.


Asunto(s)
Uniones Adherentes , Antígenos CD , Cadherinas , Células Endoteliales , Proteína Reelina , Animales , Humanos , Ratones , Uniones Adherentes/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Uniones Intercelulares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Proteómica/métodos , Serina Endopeptidasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(37): e2400654121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236238

RESUMEN

The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanotransducción Celular , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Animales , Caenorhabditis elegans/metabolismo , Mecanotransducción Celular/fisiología , Imagen Individual de Molécula , Unión Proteica , Cadherinas/metabolismo , Cadherinas/química , Cadherinas/genética , Uniones Adherentes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Proteínas del Citoesqueleto , alfa Catenina
4.
Vet Res ; 55(1): 104, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210406

RESUMEN

Meningitis induced by Pasteurella multocida has been substantially described in clinical practice in both human and veterinary medicine, but the underlying mechanisms have not been previously reported. In this study, we investigated the influence of P. multocida infection on the permeability of the blood-brain barrier (BBB) using different models. Our in vivo tests in a mouse model and in vitro tests using human brain microvascular endothelial cell (hBMEC) model showed that P. multocida infection increased murine BBB permeability in mice and hBMEC monolayer permeability. Furthermore, we observed that P. multocida infection resulted in decreased expression of tight junctions (ZO1, claudin-5, occludin) and adherens junctions (E-cadherin) between neighboring hBMECs. Subsequent experiments revealed that P. multocida infection promoted the activation of hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGFA) signaling and NF-κB signaling, and suppressed the HIF-1α/VEGFA significantly remitted the decrease in ZO1/E-cadherin induced by P. multocida infection (P < 0.001). NF-κB signaling was found to contribute to the production of chemokines such as TNF-1α, IL-ß, and IL-6. Additionally, transmission electron microscopy revealed that paracellular migration might be the strategy employed by P. multocida to cross the BBB. This study provides the first evidence of the migration strategy used by P. multocida to traverse the mammalian BBB. The data presented herein will contribute to a better understanding of the pathogenesis of the zoonotic pathogen P. multocida.


Asunto(s)
Uniones Adherentes , Barrera Hematoencefálica , Células Endoteliales , Infecciones por Pasteurella , Pasteurella multocida , Uniones Estrechas , Animales , Pasteurella multocida/fisiología , Barrera Hematoencefálica/microbiología , Ratones , Uniones Adherentes/metabolismo , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología , Células Endoteliales/microbiología , Células Endoteliales/fisiología , Uniones Estrechas/metabolismo , Humanos , Encéfalo/microbiología , Encéfalo/irrigación sanguínea
5.
Curr Biol ; 34(17): 4081-4090.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39153481

RESUMEN

Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.


Asunto(s)
Uniones Adherentes , Desmosomas , Homeostasis , Filamentos Intermedios , Mecanotransducción Celular , Desmosomas/metabolismo , Uniones Adherentes/metabolismo , Uniones Adherentes/fisiología , Animales , Filamentos Intermedios/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Perros , Células de Riñón Canino Madin Darby , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Proteína de Unión al GTP rhoA/metabolismo , Humanos , Cadherinas/metabolismo , Cadherinas/genética
6.
Cell Mol Life Sci ; 81(1): 370, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190102

RESUMEN

Proper lung function requires the maintenance of a tight endothelial barrier while simultaneously permitting the exchange of macromolecules and fluids to underlying tissue. Disruption of this barrier results in an increased vascular permeability in the lungs, leading to acute lung injury. In this study, we set out to determine whether transcriptional targets of Notch signaling function to preserve vascular integrity. We tested the in vivo requirement for Notch transcriptional signaling in maintaining the pulmonary endothelial barrier by using two complementary endothelial-specific Notch loss-of-function murine transgenic models. Notch signaling was blocked using endothelial-specific activation of an inhibitor of Notch transcriptional activation, Dominant Negative Mastermindlike (DNMAML; CDH5CreERT2), or endothelial-specific loss of Notch1 (Notch1f/f; CDH5CreERT2). Both Notch mutants increased vascular permeability with pan-Notch inhibition by DNMAML showing a more severe phenotype in the lungs and in purified endothelial cells. RNA sequencing of primary lung endothelial cells (ECs) identified novel Notch targets, one of which was transmembrane O-mannosyltransferase targeting cadherins 1 (tmtc1). We show that tmtc1 interacts with vascular endothelial cadherin (VE-cadherin) and regulates VE-cadherin egress from the endoplasmic reticulum through direct interaction. Our findings demonstrate that Notch signaling maintains endothelial adherens junctions and vascular homeostasis by a transcriptional mechanism that drives expression of critical factors important for processing and transport of VE-cadherin.


Asunto(s)
Antígenos CD , Cadherinas , Células Endoteliales , Homeostasis , Pulmón , Transducción de Señal , Animales , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Células Endoteliales/metabolismo , Pulmón/metabolismo , Pulmón/irrigación sanguínea , Antígenos CD/metabolismo , Antígenos CD/genética , Humanos , Receptores Notch/metabolismo , Receptores Notch/genética , Ratones Transgénicos , Permeabilidad Capilar , Receptor Notch1/metabolismo , Receptor Notch1/genética , Uniones Adherentes/metabolismo , Ratones Endogámicos C57BL
7.
Commun Biol ; 7(1): 940, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097636

RESUMEN

Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.


Asunto(s)
Uniones Adherentes , Presión Hidrostática , Neovascularización Fisiológica , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Movimiento Celular , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo
9.
Cell Mol Life Sci ; 81(1): 291, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970683

RESUMEN

Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.


Asunto(s)
Actinas , Uniones Adherentes , Placofilinas , Proteína de Unión al GTP rhoA , Placofilinas/metabolismo , Placofilinas/genética , Proteína de Unión al GTP rhoA/metabolismo , Uniones Adherentes/metabolismo , Humanos , Actinas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/citología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Transducción de Señal , Fibras de Estrés/metabolismo , Células Cultivadas , Animales
10.
Curr Opin Cell Biol ; 90: 102403, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079221

RESUMEN

Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Desmosomas/química , Humanos , Animales , Retículo Endoplásmico/metabolismo , Adhesión Celular , Uniones Adherentes/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo
11.
J Mol Biol ; 436(18): 168709, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009071

RESUMEN

Cell-cell junctions formed by the association of cell adhesion molecules facilitate physiological events necessary for growth and development of multicellular organisms. Among them, cadherins and nectins organize and assemble to form adherens junction, which thereby mechanically couples interacting cells. A detailed understanding of the crosstalk involving these cell adhesion molecules is fundamental to the study of the various developmental processes. Although, cadherins and nectins can recruit each other in the adherens junction through an interplay of cytoplasmic adaptor molecules, here, we report a direct interaction between N-terminal extracellular domains of E-cadherin and nectin-4 as demonstrated by surface plasmon resonance (SPR) and Atomic Force Microscopy (AFM)-based single molecule force spectroscopy (SMFS). Kinetic studies using SPR demonstrate the binding between the ectodomains of E-cadherin and nectin-4 with a KD of 3.7 ± 0.7 µM and KD of 5.4 ± 0.2 µM (reciprocal experiment). AFM-based SMFS experiments also support interaction between the ectodomains of E-cadherin and nectin-4 with the koff value of 31.48 ± 1.53 s-1 and the lifetime of the complex of 0.036 ± 0.0026 s. We thus propose a cell adhesion mechanism mediated by E-cadherin and nectin-4, which can have functional significance in early embryogenesis as evident from the expression pattern of both the proteins during early development.


Asunto(s)
Uniones Adherentes , Cadherinas , Moléculas de Adhesión Celular , Microscopía de Fuerza Atómica , Nectinas , Unión Proteica , Humanos , Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Cadherinas/genética , Cadherinas/química , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Cinética , Nectinas/metabolismo , Nectinas/genética , Resonancia por Plasmón de Superficie
12.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38952079

RESUMEN

Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. ß-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that ß-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of ß-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, ß-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate ß-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of ß-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.


Asunto(s)
Uniones Adherentes , Células Endoteliales , Células Endoteliales de la Vena Umbilical Humana , Mecanotransducción Celular , Estrés Mecánico , beta Catenina , beta Catenina/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Resistencia al Corte , Vía de Señalización Wnt , Fenómenos Biomecánicos
13.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025524

RESUMEN

Epithelia consist of proliferating and differentiating cells that often display patterned arrangements. However, the mechanism regulating these spatial arrangements remains unclear. Here, we show that cell-cell adhesion dictates multicellular patterning in stratified epithelia. When cultured keratinocytes, a type of epithelial cell in the skin, are subjected to starvation, they spontaneously develop a pattern characterized by areas of high and low cell density. Pharmacological and knockout experiments show that adherens junctions are essential for patterning, whereas the mathematical model that only considers local cell-cell adhesion as a source of attractive interactions can form regions with high/low cell density. This phenomenon, called cell-cell adhesion-induced patterning (CAIP), influences cell differentiation and proliferation through Yes-associated protein modulation. Starvation, which induces CAIP, enhances the stratification of the epithelia. These findings highlight the intrinsic self-organizing property of epithelial cells.


Asunto(s)
Uniones Adherentes , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales , Queratinocitos , Adhesión Celular/fisiología , Queratinocitos/metabolismo , Queratinocitos/citología , Diferenciación Celular/genética , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/citología , Uniones Adherentes/metabolismo , Animales , Epitelio/metabolismo , Ratones , Células Cultivadas
14.
Nat Commun ; 15(1): 5608, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969637

RESUMEN

Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, ß-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that ß-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and ß-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving ß-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.


Asunto(s)
Uniones Adherentes , Mecanotransducción Celular , Vinculina , alfa Catenina , beta Catenina , Vinculina/metabolismo , Uniones Adherentes/metabolismo , beta Catenina/metabolismo , alfa Catenina/metabolismo , alfa Catenina/genética , Animales , Humanos , Ratones , Unión Proteica
15.
Mol Biol Cell ; 35(8): ar110, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38922850

RESUMEN

Contractile myosin and cell adhesion work together to induce tissue shape changes, but how they are patterned to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While it has been shown that a multicellular gradient of myosin contractility determines folding shape, the impact of multicellular patterning of adherens junction levels on tissue folding is unknown. We identified a novel Drosophila gene moat essential for differential apical constriction and folding behaviors across the ventral epithelium which contains both folding ventral furrow and nonfolding ectodermal anterior midgut (ectoAMG). We show that Moat functions to downregulate polarity-dependent adherens junctions through inhibiting cortical clustering of Bazooka/Par3 proteins. Such downregulation of polarity-dependent junctions is critical for establishing a myosin-dependent pattern of adherens junctions, which in turn mediates differential apical constriction in the ventral epithelium. In moat mutants, abnormally high levels of polarity-dependent junctions promote ectopic apical constriction in cells with low-level contractile myosin, resulting in expansion of infolding from ventral furrow to ectoAMG, and flattening of ventral furrow constriction gradient. Our results demonstrate that tissue-scale distribution of adhesion levels patterns apical constriction and establishes morphogenetic boundaries.


Asunto(s)
Uniones Adherentes , Polaridad Celular , Proteínas de Drosophila , Drosophila melanogaster , Animales , Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Polaridad Celular/fisiología , Epitelio/metabolismo , Miosinas/metabolismo , Células Epiteliales/metabolismo , Adhesión Celular/fisiología , Morfogénesis , Péptidos y Proteínas de Señalización Intracelular
16.
PLoS Biol ; 22(6): e3002662, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870210

RESUMEN

The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.


Asunto(s)
Epidermis , Larva , Morfogénesis , Animales , Epidermis/metabolismo , Larva/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Células Epidérmicas , Células Epiteliales/citología , Células Epiteliales/fisiología , Células Epiteliales/metabolismo , Fenómenos Biomecánicos , Uniones Adherentes/metabolismo , Forma de la Célula , Simulación por Computador , Drosophila/crecimiento & desarrollo , Modelos Biológicos
17.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847494

RESUMEN

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Asunto(s)
Cadherinas , Morfogénesis , Proteínas de Pez Cebra , Pez Cebra , beta Catenina , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , beta Catenina/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Endotelio Vascular/metabolismo , Endotelio Vascular/citología , Antígenos CD
18.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864272

RESUMEN

Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.


Asunto(s)
Uniones Adherentes , Proteínas de Drosophila , Desarrollo Embrionario , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Uniones Adherentes/metabolismo , Microtúbulos/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , alfa Catenina/metabolismo , Actomiosina/metabolismo , Morfogénesis , Drosophila/embriología , Forma de la Célula , Péptidos y Proteínas de Señalización Intracelular
19.
PLoS One ; 19(5): e0290485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722959

RESUMEN

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Asunto(s)
Cadherinas , Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Adhesión Celular , Células HEK293 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Sci Rep ; 14(1): 12153, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802496

RESUMEN

Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.


Asunto(s)
Uniones Adherentes , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Polaridad Celular , Transducción de Señal , Proteína de Unión al GTP rac1 , Uniones Adherentes/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Humanos , Células Epiteliales/metabolismo , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA