Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Science ; 385(6704): 25-26, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963837

RESUMEN

Using a patient's lymphocytes is approved to treat melanoma and has wider applications.


Asunto(s)
Traslado Adoptivo , Linfocitos Infiltrantes de Tumor , Melanoma , Humanos , Melanoma/terapia , Traslado Adoptivo/métodos
2.
Front Immunol ; 15: 1367609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035005

RESUMEN

Introduction: Adoption of allogeneic T cells directly supplements the number of T cells and rapidly induces T-cell immunity, which has good efficacy for treating some tumors and immunodeficiency diseases. However, poor adoptive T-cell engraftment and graft-versus-host disease (GVHD) limit the application of these methods. Alloreactive T-cell clones were eliminated from the donor T-cell repertoire, and the remaining T-cell clones were prepared as Tscm for T-cell adoptive treatment to reconstruct recipient T-cell immunity without GVHD. Methods: The subjects in this study included three different strains of mice. Lymphocytes from mice (C57BL/6) were used as the donor T-cell repertoire, from which the Tscm allo-reactive T cell clone was depleted (ATD-Tscm). This was confirmed by showing that the Tscm was not responsive to the alloantigen of the recipient (BALB/c). To prepare ATD-Tscm cells, we used recipient lymphocytes as a simulator, and coculture of mouse and recipient lymphocytes was carried out for 7 days. Sorting of non-proliferative cells ensured that the prepared Tscm cells were nonresponsive. The sorted lymphocytes underwent further expansion by treatment with TWS119 and cytokines for an additional 10 days, after which the number of ATD-Tscm cells increased. The prepared Tscm cells were transferred into recipient mice to observe immune reconstitution and GVHD incidence. Results: Our protocol began with the use of 1×107 donor lymphocytes and resulted in 1 ×107 ATD-Tscm cells after 17 days of preparation. The prepared ATD-Tscm cells exhibited a nonresponse upon restimulation of the recipient lymphocytes. Importantly, the prepared ATD-Tscm cells were able to bind long and reconstitute other T-cell subsets in vivo, effectively recognizing and answering the "foreign" antigen without causing GVHD after they were transferred into the recipients. Discussion: Our strategy was succeeded to prepare ATD-Tscm cells from the donor T-cell repertoire. The prepared ATD-Tscm cells were able to reconstitute the immune system and prevent GVHD after transferred to the recipients. This study provides a good reference for generating ATD-Tscm for T-cell adoptive immunotherapy.


Asunto(s)
Enfermedad Injerto contra Huésped , Ratones Endogámicos C57BL , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Ratones , Linfocitos T/inmunología , Ratones Endogámicos BALB C , Inmunoterapia Adoptiva/métodos , Trasplante Homólogo , Traslado Adoptivo/métodos , Reconstitución Inmune , Modelos Animales de Enfermedad
3.
Trends Cancer ; 10(8): 749-769, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048489

RESUMEN

Therapeutic cancer vaccines have been a subject of research for several decades as potential new weapons to tackle malignancies. Their goal is to induce a long-lasting and efficient antitumour-directed immune response, capable of mediating tumour regression, preventing tumour progression, and eradicating minimal residual disease, while avoiding major adverse effects. Development of new vaccine technologies and antigen prediction methods has led to significant improvements in cancer vaccine efficacy. However, for their successful clinical application, certain obstacles still need to be overcome, especially tumour-mediated immunosuppression and escape mechanisms. In this review, we introduce therapeutic cancer vaccines and subsequently discuss combination approaches of next-generation cancer vaccines and existing immunotherapies, particularly immune checkpoint inhibitors (ICIs) and adoptive cell transfer/cell-based immunotherapies.


Asunto(s)
Vacunas contra el Cáncer , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , Humanos , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Neoplasias/terapia , Neoplasias/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Inmunoterapia/tendencias , Animales , Antígenos de Neoplasias/inmunología , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Terapia Combinada/métodos , Traslado Adoptivo/métodos
4.
Transpl Infect Dis ; 26(4): e14296, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830809

RESUMEN

BACKGROUND: Reactivation of viral infections, in particular cytomegalovirus (CMV) and adenovirus (ADV), cause morbidity and non-relapse-mortality in states of immune deficiency, especially after allogeneic hematopoietic cell transplantation (allo-HCT). Against the background of few available pharmacologic antiviral agents, limited by toxicities and resistance, adoptive transfer of virus-specific T-cells (VST) is a promising therapeutic approach. METHODS: We conducted a single-center retrospective analysis of adult patients treated with ADV- or CMV-specific T-cells in 2012-2022. Information was retrieved by review of electronic health records. Primary outcome was a response to VST by decreasing viral load or clinical improvement. Secondary outcomes included overall survival and safety of VST infusion, in particular association with graft-versus-host disease (GVHD). RESULTS: Ten patients were included, of whom four were treated for ADV, five for CMV, and one for ADV-CMV-coinfection. Cells were derived from stem cell donors (6/10) or third-party donors (4/10). Response criteria were met by six of 10 patients (4/4 ADV, 2/5 CMV, and 0/1 ADV-CMV). Overall survival was 40%. No infusion related adverse events were documented. Aggravation of GVHD after adoptive immunotherapy was observed in two cases, however in temporal association with a conventional donor lymphocyte infusion and a stem cell boost, respectively. CONCLUSION: In this cohort, CMV- and ADV-specific T-cell therapy appear to be safe and effective. We describe the first reported case of virus-specific T-cell therapy for CMV reactivation not associated with transplantation but with advanced HIV infection. This encourages further evaluation of adoptive immunotherapy beyond the context of allo-HCT.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Linfocitos T , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Masculino , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Adulto , Citomegalovirus/inmunología , Linfocitos T/inmunología , Infecciones por VIH/inmunología , Enfermedad Injerto contra Huésped , Inmunoterapia Adoptiva/métodos , Carga Viral , Traslado Adoptivo/métodos , Adenoviridae/inmunología , Anciano , Resultado del Tratamiento , Infecciones por Adenoviridae/inmunología
5.
Methods Cell Biol ; 188: 109-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880520

RESUMEN

Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eµ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eµ-TCL1 model, employing the adoptive transfer of Eµ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eµ-TCL1 model in their research.


Asunto(s)
Traslado Adoptivo , Modelos Animales de Enfermedad , Leucemia Linfocítica Crónica de Células B , Ratones Endogámicos C57BL , Animales , Leucemia Linfocítica Crónica de Células B/terapia , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Traslado Adoptivo/métodos , Ratones Transgénicos , Bazo , Humanos , Proteínas Proto-Oncogénicas
6.
J Immunother Cancer ; 12(6)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945552

RESUMEN

BACKGROUND: How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown. METHODS: CD4+ T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy. RESULTS: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells. Antitumor Th17 cells engrafted better following preconditioning with TBI and regressed large established melanoma in all animals. Conversely, only half of mice survived long-term when preconditioned with CTX and infused with anti-melanoma Th17 cells. Interleukin (IL)-17 and interferon-γ, produced by the infused Th17 cells, were detected in animals given either TBI or CTX preconditioning. Interestingly, inflammatory cytokines (granulocyte colony stimulating factor, IL-6, monocyte chemoattractant protein-1, IL-5, and keratinocyte chemoattractant) were significantly elevated in the serum of mice preconditioned with TBI versus CTX after Th17 therapy. The addition of fludarabine (FLU, 200 mg/kg) to CTX (200 mg/kg) improved the antitumor response to the same degree mediated by TBI, whereas FLU alone with Th17 therapy was ineffective. CONCLUSIONS: Our results indicate, for the first time, that the antitumor response, persistence, and cytokine profiles resulting from Th17 therapy are impacted by the specific regimen of host preconditioning. This work is important for understanding mechanisms that promote long-lived responses by adoptive cellular therapy, particularly as CD4+ based T-cell therapies are now emerging in the clinic.


Asunto(s)
Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Ratones Endogámicos C57BL , Inmunoterapia Adoptiva/métodos , Irradiación Corporal Total , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/tratamiento farmacológico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Traslado Adoptivo/métodos , Femenino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/terapia
7.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772902

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Asunto(s)
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales , Hiperoxia , Macrófagos Alveolares , Animales , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Células Progenitoras Endoteliales/trasplante , Células Progenitoras Endoteliales/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Quimiocina CXCL12/metabolismo , Hiperoxia/terapia , Ratones Endogámicos C57BL , Animales Recién Nacidos , Pulmón/patología , Pulmón/metabolismo , Humanos , Traslado Adoptivo/métodos , Trasplante de Células Madre/métodos
8.
Front Immunol ; 15: 1339318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711496

RESUMEN

Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.


Asunto(s)
Enfermedad Injerto contra Huésped , Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Humanos , Efecto Injerto vs Leucemia/inmunología , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante Homólogo , Traslado Adoptivo/métodos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología
9.
World J Gastroenterol ; 30(13): 1791-1800, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659486

RESUMEN

Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.


Asunto(s)
Inmunosupresores , Trasplante de Hígado , Humanos , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Tolerancia Inmunológica/inmunología , Enfermedad Hepática en Estado Terminal/cirugía , Enfermedad Hepática en Estado Terminal/inmunología , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Tolerancia al Trasplante/inmunología , Traslado Adoptivo/métodos , Supervivencia de Injerto/inmunología , Supervivencia de Injerto/efectos de los fármacos , Animales , Resultado del Tratamiento , Linfocitos T Reguladores/inmunología , Hígado/inmunología , Hígado/patología , Hígado/cirugía
10.
Blood Adv ; 8(10): 2373-2383, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38467031

RESUMEN

ABSTRACT: Immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is slow and patients carry a high and prolonged risk of opportunistic infections. We hypothesized that the adoptive transfer of donor B cells can foster after HSCT immuno-reconstitution. Here, we report, to our knowledge, the results of a first-in-human phase 1/2a study aimed to evaluate the feasibility and safety of adoptively transferred donor B cells and to test their activity upon recall vaccination. Good manufactoring practice (GMP) B-cell products were generated from donor apheresis products using 2-step magnetic cell separation. Fifteen patients who had undergone allo-HSCT were enrolled and treated after taper of immunosuppression (median, day +148; range, 130-160). Patients received 4 different doses of B cells (0.5 × 106 to 4.0 × 106 B cells per kg body weight). To test the activity of infused donor memory B cells in vivo, patients were vaccinated with a pentavalent vaccine 7 days after B-cell transfer. We observed the mobilization of plasmablasts and an increase in serum titers against vaccine antigens, with a stronger response in patients receiving higher B-cell numbers. Analysis of immunoglobulin VH-sequences by next-generation sequencing revealed that plasmablasts responding to vaccination originated from memory B-cell clones from the donor. Donor B-cell transfer was safe, as no Epstein-Barr virus (EBV) reactivation was observed, and only low-grade graft-versus-host disease (GVHD) occurred in 4 out of 15 patients. This pilot trial may pave the way for further studies exploring the adoptive transfer of memory B cells to reduce the frequency of infections after allo-HSCT. This trial was registered at ClinicalTrial.gov as #NCT02007811.


Asunto(s)
Traslado Adoptivo , Linfocitos B , Trasplante de Células Madre Hematopoyéticas , Trasplante Homólogo , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto , Linfocitos B/inmunología , Persona de Mediana Edad , Masculino , Femenino , Traslado Adoptivo/métodos , Donantes de Tejidos , Adulto Joven , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control
11.
J Hepatol ; 80(6): 913-927, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38340812

RESUMEN

BACKGROUND & AIMS: Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms. METHODS: uPAR expression was studied in patients with fibrosis/cirrhosis and in murine models of liver fibrosis, including mice treated with carbon tetrachloride, a 5-diethoxycarbonyl-1, 4-dihydrocollidine diet, or a high-fat/cholesterol/fructose diet. The safety and efficacy of CAR-Ms were evaluated in vitro and in vivo. RESULTS: Adoptive transfer of CAR-Ms resulted in a significant reduction in liver fibrosis and the restoration of function in murine models of liver fibrosis. CAR-Ms modulated the hepatic immune microenvironment to recruit and modify the activation of endogenous immune cells to drive fibrosis regression. These CAR-Ms were able to recruit and present antigens to T cells and mount specific antifibrotic T-cell responses to reduce fibroblasts and liver fibrosis in mice. CONCLUSION: Collectively, our findings demonstrate the potential of using macrophages as a platform for CAR technology to provide an effective treatment option for liver fibrosis. CAR-Ms might be developed for treatment of patients with liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis is an incurable condition that afflicts millions of people globally. Despite the clear clinical need, therapies for liver fibrosis are limited. Our findings provide the first preclinical evidence that chimeric antigen receptor (CAR)-macrophages (CAR-Ms) targeting uPAR can attenuate liver fibrosis and cirrhosis. We show that macrophages expressing this uPAR CAR exert a direct antifibrotic effect and elicit a specific T-cell response that augments the immune response against liver fibrosis. These findings demonstrate the potential of using CAR-Ms as an effective cell-based therapy for the treatment of liver fibrosis.


Asunto(s)
Modelos Animales de Enfermedad , Cirrosis Hepática , Macrófagos , Receptores Quiméricos de Antígenos , Animales , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Cirrosis Hepática/terapia , Cirrosis Hepática/inmunología , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/inmunología , Masculino , Ratones Endogámicos C57BL , Femenino , Traslado Adoptivo/métodos
12.
J Pediatric Infect Dis Soc ; 13(Supplement_1): S49-S57, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417086

RESUMEN

Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante de Órganos , Sepsis , Virosis , Humanos , Linfocitos T , Virosis/terapia , Traslado Adoptivo/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos
13.
Immunology ; 170(4): 540-552, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37671510

RESUMEN

Adoptive regulatory T-cell (Treg) transfer has emerged as a promising therapeutic strategy for regulating immune responses in organ transplantation, graft versus host disease, and autoimmunity, including Type 1 diabetes. Traditionally, Treg for adoptive therapy have been sorted and expanded in vitro using high doses of IL-2, demonstrating stability and suppressive capabilities. However, limitations in their long-term survival post-infusion into patients have been observed. To address this challenge, we investigated a novel expansion protocol incorporating interleukin-7 (IL-7) alongside the traditional method utilizing IL-2 (referred to as IL-7 method, IL-7M). Our study revealed that naïve Treg express significant levels of CD127 and display robust responsiveness to IL-7, characterized by STAT-5 phosphorylation. Expanding naïve Treg with the IL-7M protocol led to a substantial enrichment of CD45RA+ CD62L+ CD95+ Treg but showing a reduction in the final cell yield and suppressive function. Moreover, Treg expanded with the IL-7M exhibited preserved telomere length and demonstrated enhanced resistance to cytokine withdrawal and fas-mediated apoptosis. When transferred into NSG mice IL-7M-Treg persisted longer and reduced the expansion of T cells, but did not significantly reduce the severity of xenoGvHD. In conclusion, our data demonstrate the feasibility of expanding naïve Treg in the presence of IL-7 to generate a Treg product enriched in poorly differentiated CD45RA+ cells with enhanced survival capabilities.


Asunto(s)
Interleucina-7 , Linfocitos T Reguladores , Humanos , Ratones , Animales , Interleucina-2 , Citocinas , Traslado Adoptivo/métodos , Antígenos Comunes de Leucocito , Factores de Transcripción Forkhead
14.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883565

RESUMEN

Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD.


Asunto(s)
Trasplante de Médula Ósea , Colitis , Enfermedad Injerto contra Huésped , Animales , Ratones , Traslado Adoptivo/métodos , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Trasplante de Médula Ósea/efectos adversos , Quimiocinas/sangre , Quimiocinas/genética , Quimiocinas/inmunología , Colitis/sangre , Colitis/genética , Colitis/inmunología , Colitis/patología , Colitis/terapia , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Monocitos/inmunología , Monocitos/trasplante , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Receptores de Quimiocina/sangre , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Trasplante Homólogo/efectos adversos
15.
Science ; 378(6622): 853-858, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36423279

RESUMEN

Immune cells are being engineered to recognize and respond to disease states, acting as a "living drug" when transferred into patients. Therapies based on engineered immune cells are now a clinical reality, with multiple engineered T cell therapies approved for treatment of hematologic malignancies. Ongoing preclinical and clinical studies are testing diverse strategies to modify the fate and function of immune cells for applications in cancer, infectious disease, and beyond. Here, we discuss current progress in treating human disease with immune cell therapeutics, emerging strategies for immune cell engineering, and challenges facing the field, with a particular emphasis on the treatment of cancer, where the most effort has been applied to date.


Asunto(s)
Traslado Adoptivo , Ingeniería Celular , Neoplasias Hematológicas , Linfocitos T , Humanos , Neoplasias Hematológicas/terapia , Linfocitos T/inmunología , Linfocitos T/trasplante , Traslado Adoptivo/métodos
16.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066993

RESUMEN

Increasing evidence has pointed to the important function of T cells in controlling immune homeostasis and pathogenesis after myocardial infarction (MI), although the underlying molecular mechanisms remain elusive. In this study, a broad analysis of immune markers in 283 patients revealed significant CD69 overexpression on Tregs after MI. Our results in mice showed that CD69 expression on Tregs increased survival after left anterior descending (LAD) coronary artery ligation. Cd69-/- mice developed strong IL-17+ γδT cell responses after ischemia that increased myocardial inflammation and, consequently, worsened cardiac function. CD69+ Tregs, by induction of AhR-dependent CD39 ectonucleotidase activity, induced apoptosis and decreased IL-17A production in γδT cells. Adoptive transfer of CD69+ Tregs into Cd69-/- mice after LAD ligation reduced IL-17+ γδT cell recruitment, thus increasing survival. Consistently, clinical data from 2 independent cohorts of patients indicated that increased CD69 expression in peripheral blood cells after acute MI was associated with a lower risk of rehospitalization for heart failure (HF) after 2.5 years of follow-up. This result remained significant after adjustment for age, sex, and traditional cardiac damage biomarkers. Our data highlight CD69 expression on Tregs as a potential prognostic factor and a therapeutic option to prevent HF after MI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratones , Traslado Adoptivo/métodos , Apoptosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Interleucina-17/metabolismo , Infarto del Miocardio/patología , Linfocitos T Reguladores
17.
Int Rev Cell Mol Biol ; 370: 163-192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35798505

RESUMEN

Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, a large group of patients fail to respond to therapy or progress after initial response, which brings the need for additional treatment options. Manipulating the immune system using a variety of approaches has been explored for the past years with successful results. Sustained progress has been made to understand the T cell-mediated anti-tumor responses counteracting the tumorigenesis process. The T-lymphocyte pool, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in defeating cancer. The adoptive cell transfer of autologous tumor-infiltrating lymphocytes has been used in humans for over 30 years to treat metastatic melanoma. In this review, we provide a brief history of ACT-TIL and discuss the current state of ACT-TIL clinical development in solid tumors. We also discuss how key advances in understanding genetic intratumor heterogeneity, to accurately identify neoantigens, and new strategies designed to overcome T-cell exhaustion and tumor immunosuppression have improved the efficacy of the TIL-therapy infusion. Characteristics of the TIL products will be discussed, as well as new strategies, including the selective expansion of specific fractions from the cell product or the genetic manipulation of T cells for improving the in-vivo survival and functionality. In summary, this review outlines the potential of ACT-TIL as a personalized approach for epithelial tumors and continued discoveries are making it increasingly more effective against other types of cancers.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Melanoma , Traslado Adoptivo/métodos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Melanoma/genética , Melanoma/patología
18.
PLoS One ; 17(3): e0264366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312698

RESUMEN

Immunotherapy has emerged as a promising therapeutic approach for treating several forms of cancer. Adoptive cell transfer of immune cells, such as natural killer (NK) cells, provides a powerful therapeutic potential against tumor cells. In the past decades, two-dimensional (2D) tumor models have been used to investigate the effectiveness of immune cell killing. However, the 2D tumor models exhibit less structural complexity and cannot recapitulate the physiological condition of the tumor microenvironment. Thus, the effectiveness of immune cells against tumor cells using these models cannot fully be translated to clinical studies. In order to gain a deeper insight into immune cell-tumor interaction, more physiologically relevant in vivo-like three-dimensional (3D) tumor models have been developed. These 3D tumor models can mimic the dynamic cellular activities, making them a much closer representation of the in vivo tumor profiles. Here, we describe a simple and effective protocol to study the cytotoxic activity of primary human NK cells toward the 3D tumor spheroids. Our protocol includes isolation and expansion of human NK cells, labeling and formation of tumor spheroids, co-culture of NK cells and tumor spheroids, and evaluation of cytotoxic activity using a confocal microscope. This protocol is also applicable to other types of tumors and immune cells.


Asunto(s)
Neoplasias , Esferoides Celulares , Traslado Adoptivo/métodos , Línea Celular Tumoral , Humanos , Inmunoterapia , Células Asesinas Naturales , Neoplasias/terapia , Microambiente Tumoral
19.
FASEB J ; 36(2): e22139, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064693

RESUMEN

Metformin, a commonly prescribed drug for type 2 diabetes mellitus, has been shown to activate AMP-activated protein kinase (AMPK). Notably, AMPK activation has recently been observed to be associated with anti-inflammatory responses. Metformin is also reported to elicit anti-inflammatory responses in CD4+ T cells, resulting in improvement in experimental chronic inflammatory diseases, such as systemic lupus erythematosus. To investigate the effect of metformin on inflammatory bowel disease (IBD), we developed a T cell-transfer model of chronic colitis in which SCID mice were injected with CD4+ CD45RBhigh T cells to induce colitis. We examined the effects of metformin via in vitro and in vivo experiments on lamina propria (LP) CD4+ T cells. We observed that metformin suppresses the frequency of interferon (IFN) -γ-producing LP CD4+ T cells in vitro, which were regulated by AMPK activation, a process possibly induced by the inhibition of oxidative phosphorylation. Furthermore, we examined the effects of metformin on an in vivo IBD model. Metformin-treated mice showed AMPK activation in LP CD4+ T cells and ameliorated colitis. Our study demonstrates that metformin-induced AMPK activation in mucosal CD4+ T cells contributes to the improvement of IBD by suppressing IFN-γ production. Moreover, our results indicate that AMPK may be a target molecule for the regulation of mucosal immunity and inflammation. Thus, AMPK-activating drugs such as metformin may be potential therapeutic agents for the treatment of IBD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Colitis/tratamiento farmacológico , Interferón gamma/metabolismo , Metformina/farmacología , Membrana Mucosa/efectos de los fármacos , Traslado Adoptivo/métodos , Animales , Linfocitos T CD4-Positivos/metabolismo , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Inmunidad Mucosa/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Membrana Mucosa/metabolismo
20.
Biomed Pharmacother ; 145: 112480, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34915667

RESUMEN

Adoptive cell therapy (ACT) based on TCR- or CAR-T cells has become an efficient immunotherapeutic approach for the treatment of various diseases, including cancer. Previously, we developed a novel strategy for generating therapeutic T cell products based on chain-centric TCRs, in which either α- or ß-chain dominates in cognate antigen recognition. To assess the suitability of our experimental approach for the clinical application and predict its possible adverse effects, in studies here, we evaluated the safety of the experimental TCRα-modified T cell product in mouse preclinical models. Our data showed no tumorigenic or mutagenic activity in vitro of TCRα-transduced T cells, indicating no genotoxicity of viral vectors used for the generation of the experimental T cell product. Adoptive transfer of TCRα-engineered T cells in a wide dose range didn`t disturb the host homeostasis and exhibited no acute toxicity or immunotoxicity in vivo. Based on pharmacokinetics and pharmacodynamics analysis here, modified T cells rapidly penetrated and distributed in many viscera after infusion. Histological evaluations revealed no pathological changes in organs caused by T cells accumulation, indicating the absence of non-specific off-target activity or cross-reactivity of the therapeutic TCRα. Studies here provide valuable information on the potential safety of TCRα-T cell based ACT that could be extrapolated to possible effects in a human host.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Traslado Adoptivo/métodos , Animales , Carcinogénesis/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Homeostasis/inmunología , Humanos , Inmunoterapia Adoptiva/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C , Mutagénesis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA