Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Biomaterials ; 312: 122724, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106818

RESUMEN

The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.


Asunto(s)
Neoplasias Óseas , Regeneración Ósea , Calcio , Ácido Gálico , Células Madre Mesenquimatosas , Ácido Gálico/química , Regeneración Ósea/efectos de los fármacos , Animales , Calcio/metabolismo , Neoplasias Óseas/terapia , Neoplasias Óseas/tratamiento farmacológico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Terapia Fototérmica/métodos , Osteogénesis/efectos de los fármacos , Ratones , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular Tumoral
2.
Biomaterials ; 312: 122751, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121726

RESUMEN

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Asunto(s)
Inmunoterapia , Nanomedicina , Animales , Inmunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Terapia Fototérmica/métodos , Ratones , Humanos , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Proteínas/química , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Adhesivos/química , Ratones Endogámicos C57BL , Adyuvantes Inmunológicos/farmacología
3.
Biomaterials ; 313: 122763, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39180917

RESUMEN

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Asunto(s)
Cobre , Nanomedicina , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Animales , Femenino , Nanomedicina/métodos , Cobre/química , Cobre/farmacología , Línea Celular Tumoral , Ratones , Nanopartículas/química , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indoles/farmacología
4.
Biomaterials ; 313: 122771, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190940

RESUMEN

The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.


Asunto(s)
Fluorocarburos , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Microambiente Tumoral , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Animales , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Fluorocarburos/química , Fluorocarburos/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Humanos , Ratones , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fototerapia/métodos , Femenino
5.
Biochemistry (Mosc) ; 89(8): 1362-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245451

RESUMEN

The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.


Asunto(s)
Grafito , Neoplasias , Nanomedicina Teranóstica , Grafito/química , Grafito/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Terapia Fototérmica/métodos
6.
Carbohydr Polym ; 345: 122569, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227105

RESUMEN

Breast cancer is a malignant tumor that poses a significant threat to women's health and single therapy fails to play a good oncological therapeutic effect. Synergistic treatment with multiple strategies may make up for the deficiencies and has gained widespread attention. In this study, sulfhydryl-modified hyaluronic acid (HA-SH) was covalently crosslinked with polydopamine (PDA) via a Michael addition reaction to develop an injectable hydrogel, in which PDA can be used not only as a matrix but also as a photothermal agent. After HSA and paclitaxel were spontaneously organized into nanoparticles via hydrophobic interaction, hyaluronic acid with low molecular weight was covalently linked to HSA, thus conferring effectively delivery. This photothermal injectable hydrogel incorporates PTX@HSA-HA nanoparticles, thereby initiating a thermochemotherapeutic response to target malignancy. Our results demonstrated that this injectable hydrogel possesses consistent drug delivery capability in a murine breast cancer model, collaborating with photothermal therapy to effectively suppress tumor growth, represented by low expression of Ki-67 and increasing apoptosis. Photothermal therapy (PTT) can effectively stimulate immune response by increasing IL-6 and TNF-α. Notably, the treatment did not elicit any indications of toxicity. This injectable hydrogel holds significant promise as a multifaceted therapeutic agent that integrates photothermal and chemotherapeutic modalities.


Asunto(s)
Neoplasias de la Mama , Ácido Hialurónico , Hidrogeles , Paclitaxel , Terapia Fototérmica , Animales , Ácido Hialurónico/química , Hidrogeles/química , Hidrogeles/farmacología , Femenino , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones , Terapia Fototérmica/métodos , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/administración & dosificación , Humanos , Indoles/química , Indoles/farmacología , Ratones Endogámicos BALB C , Polímeros/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Portadores de Fármacos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Fototerapia/métodos
7.
Carbohydr Polym ; 345: 122568, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227122

RESUMEN

Bleeding and bacterial infection are common problems associated with wound treatment, while effective blood clotting and vessel regeneration promotion are the primary considerations to design the wound dressing materials. This research presents a chitosan-based hydrogel with grafted quaternary ammonium and polyphosphate (QCSP hydrogel) as the antibacterial hemostatic dressing to achieve burn wound treatment. The tissue adhesion of the hydrogel sealed the blood flow and the polyphosphate grafted to the chitosan promoted the activation of coagulation factor V to enhance the hemostasis. At the same time, the grafted quaternary ammonium enhanced the antibacterial ability of the biodegradable hydrogel wound dressing. In addition, the polydopamine as a photothermal agent was composited into the hydrogel to enhance the antibacterial and reactive oxygen scavenging performance. The in vivo hemostasis experiment proved the polyphosphate enhanced the coagulation property. Moreover, this photothermal property of the composite hydrogel enhanced the burn wound repairing rate combined with the NIR stimulus. As a result, this hydrogel could have potential application in clinic as dressing material for hemostasis and infection prone would repairing.


Asunto(s)
Antibacterianos , Quemaduras , Quitosano , Hemostasis , Hidrogeles , Indoles , Polímeros , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Quemaduras/tratamiento farmacológico , Quemaduras/terapia , Polímeros/química , Polímeros/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Animales , Indoles/química , Indoles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Hemostasis/efectos de los fármacos , Ratones , Hemostáticos/química , Hemostáticos/farmacología , Vendajes , Masculino , Ratas , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ratas Sprague-Dawley , Pruebas de Sensibilidad Microbiana , Terapia Fototérmica/métodos
8.
Int J Nanomedicine ; 19: 9213-9226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263631

RESUMEN

Introduction: Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods: We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results: CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion: CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.


Asunto(s)
Cobre , Imagen por Resonancia Magnética , Terapia Fototérmica , Receptores CXCR4 , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X , Animales , Receptores CXCR4/metabolismo , Nanomedicina Teranóstica/métodos , Terapia Fototérmica/métodos , Línea Celular Tumoral , Imagen por Resonancia Magnética/métodos , Ratones , Cobre/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Ratones Endogámicos BALB C , Femenino , Humanos , Medios de Contraste/química , Nanopartículas/química , Ciclamas/farmacología , Ciclamas/química , Bencilaminas/química
9.
Theranostics ; 14(13): 4933-4947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267783

RESUMEN

Rationale: Optogenetically engineered facultative anaerobic bacteria exhibit a favorable tendency to colonize at solid tumor sites and spatiotemporally-programmable therapeutics release abilities, attracting extensive attention in precision tumor therapy. However, their therapeutic efficacy is moderate. Conventional photothermal agents with high tumor ablation capabilities exhibit low tumor targeting efficiency, resulting in significant off-target side effects. The combination of optogenetics and photothermal therapy may offer both tumor-targeting and excellent tumor-elimination capabilities, which unfortunately has rarely been investigated. Herein, we construct a bacteria-based cascade near-infrared optogentical-photothermal system (EcNαHL-UCNPs) for enhanced tumor therapy. Methods: EcNαHL-UCNPs consists of an optogenetically engineered Escherichia coli Nissle 1917 (EcN) conjugated with lanthanide-doped upconversion nanoparticles (UCNPs), which are capable of locally secreting α-hemolysin (αHL), a pore-forming protein, in responsive to NIR irradiation. Anti-tumor effects of EcNαHL-UCNPs were determined in both H22 and 4T1 tumors. Results: The αHL not only eliminates tumor cells, but more importantly disrupts endothelium to form thrombosis as an in situ photothermal agent in tumors. The in situ formed thrombosis significantly potentiates the photothermic ablation of H22 tumors upon subsequent NIR light irradiation. Besides, αHL secreted by EcNαHL-UCNPs under NIR light irradiation not only inhibits 4T1 tumor growth, but also suppresses metastasis of 4T1 tumor via inducing the immune response. Conclusion: Our studies highlight bacteria-based cascade optogenetical-photothermal system for precise and effective tumor therapy.


Asunto(s)
Escherichia coli , Nanopartículas , Optogenética , Terapia Fototérmica , Animales , Ratones , Terapia Fototérmica/métodos , Escherichia coli/genética , Línea Celular Tumoral , Nanopartículas/química , Optogenética/métodos , Ratones Endogámicos BALB C , Rayos Infrarrojos , Femenino , Neoplasias/terapia , Humanos , Fototerapia/métodos
10.
Int J Nanomedicine ; 19: 8901-8927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233743

RESUMEN

Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results: The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion: Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.


Asunto(s)
Antibacterianos , Grafito , Hidrogeles , Plata , Cicatrización de Heridas , Grafito/química , Grafito/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Plata/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Humanos , Ratones , Terapia Fototérmica/métodos , Nanopartículas/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
11.
J Nanobiotechnology ; 22(1): 561, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272205

RESUMEN

BACKGROUND: T cell-based immunotherapies are facing great challenges in the recruitment and activation of tumor-specific T cells against solid tumors. Among which, utilizing nanobody (Nb) or nanobodies (Nbs) to construct T cell engager has emerged as a more practical potential for enhancing the anti-tumor effectiveness of T cells. Here, we designed a new Nb-guided multifunctional T cell engager (Nb-MuTE) that not only recruited effector T cells into the tumor tissues, but also efficiently activated T cells anti-tumor immunity when synergies with photothermal effect. RESULTS: The Nb-MuTE, which was constructed based on an indocyanine green (ICG)-containing liposome with surface conjugation of CD105 and CD3 Nbs, and showed excellent targetability to both tumor and T cells, following enhancement of activation, proliferation and cytokine secretion of tumor-specific T cells. Notably, the immunological anti-tumor functions of Nb-MuTE-mediated T cells were further enhanced by the ICG-induced photothermal effect in vitro and in vivo. CONCLUSIONS: Such a new platform Nb-MuTE provides a practical and "all-in-one" strategy to potentiate T cell responses for the treatment of solid tumor in clinic.


Asunto(s)
Inmunoterapia , Verde de Indocianina , Anticuerpos de Dominio Único , Linfocitos T , Animales , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Ratones , Linfocitos T/inmunología , Verde de Indocianina/química , Inmunoterapia/métodos , Línea Celular Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Femenino , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Liposomas/química , Activación de Linfocitos , Ratones Endogámicos C57BL , Complejo CD3/inmunología
12.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274898

RESUMEN

Multifunctional targeted drug delivery systems have been explored as a novel cancer treatment strategy to overcome limitations of traditional chemotherapy. The combination of photodynamic therapy and chemotherapy has been shown to enhance efficacy, but the phototoxicity of traditional photosensitizers is a challenge. In this study, we prepared a multi-sensitive composite hydrogel containing gold nanoclusters (Au NCs) and the temperature-sensitive antitumor drug 5-fluorourac il (5-FU) using carboxymethyl cellulose (Carr) as a dual-functional template. Au NCs were synthesized using sodium borohydride as a reducing agent and potassium as a promoter. The resulting Au NCs were embedded in the Carr hydrogel, which was then conjugated with lactobionic acid (LA) as a targeting ligand. The resulting Au NCs/5-FU@Carr-LA composite hydrogel was used for synergistic photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy. Au NCs/5-FU@Carr-LA releases the drug faster at pH 5.0 due to the acid sensitivity of the Carr polymer chain. In addition, at 50 °C, the release rate of Au NCs/5-FU@Carr-LA is 78.2%, indicating that the higher temperature generated by the photothermal effect is conducive to the degradation of Carr polymer chains. The Carr hydrogel stabilized the Au NCs and acted as a matrix for drug loading, and the LA ligand facilitated targeted delivery to tumor cells. The composite hydrogel exhibited excellent biocompatibility and synergistic antitumor efficacy, as demonstrated by in vitro and in vivo experiments. In addition, the hydrogel had thermal imaging capabilities, making it a promising multifunctional platform for targeted cancer therapy.


Asunto(s)
Fluorouracilo , Oro , Hidrogeles , Nanopartículas del Metal , Fotoquimioterapia , Oro/química , Hidrogeles/química , Fluorouracilo/farmacología , Fluorouracilo/química , Animales , Nanopartículas del Metal/química , Ratones , Humanos , Fotoquimioterapia/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Carboximetilcelulosa de Sodio/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Liberación de Fármacos , Terapia Fototérmica/métodos
13.
Int J Nanomedicine ; 19: 9145-9160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258005

RESUMEN

Background: Triple negative breast cancer (TNBC) is one of the worst prognosis types of breast cancer that urgently needs effective therapy methods. However, cancer is a complicated disease that usually requires multiple treatment modalities. Methods: A tumor microenvironment (TME)-responsive PFC/TRIM37@Fe-TA@HA (abbreviated as PTFTH) nanoplatform was constructed by coating Fe3+ and tannic acid (TA) on the surface of TRIM37-siRNA loaded phase-transition perfluorocarbon (PFC) nanodroplets and further modifying them with hyaluronic acid (HA) to achieve tumor-specific mild photothermal/gene/ferroptosis synergistic therapy (MPTT/GT/ Ferroptosis) in vitro. Once internalized into tumor cells through CD44 receptor-mediated active targeting, the HA shell of PTFTH would be preliminarily disassembled by hyaluronidase (HAase) to expose the Fe-TA metal-phenolic networks (MPNs), which would further degrade in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Fe3+ and PFC/TRIM37. Results: PTFTH showed good biocompatibility in vitro. On the one hand, the released Fe3+ could deplete the overexpressed glutathione (GSH) through redox reactions and produce Fe2+, which in turn converts endogenous H2O2 into highly cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). On the other hand, the local hyperthermia generated by PTFTH under 808 nm laser irradiation could not only improve CDT efficacy through accelerating the Fe2+-mediated Fenton reaction, but also enhance TRIM37-siRNA delivery for gene therapy (GT). The consumption of GSH and accumulation of •OH synergistically augmented intracellular oxidative stress, resulting in substantial tumor cell ferroptosis. Moreover, PTFTH possessed outstanding contrast enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) ability. Conclusion: This PTFTH based multiple-mode therapeutic strategy has successfully achieved a synergistic anticancer effect in vitro and has the potential to be translated into clinical application for tumor therapy in future.


Asunto(s)
Ferroptosis , Glutatión , Ácido Hialurónico , Nanopartículas , Terapia Fototérmica , ARN Interferente Pequeño , Taninos , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Glutatión/química , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Taninos/química , Taninos/farmacología , Nanopartículas/química , Ácido Hialurónico/química , Femenino , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/genética , Terapia Fototérmica/métodos , Fluorocarburos/química , Fluorocarburos/farmacología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Terapia Genética/métodos , Terapia Combinada/métodos , Animales , Hierro/química , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo
14.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273127

RESUMEN

As a novel therapeutic approach, photothermal therapy (PTT) combined with chemotherapy can synergistically produce antitumor effects. Herein, dithiodipropionic acid (DTDP) was used as a donor of disulfide bonds sensitive to the tumor microenvironment for establishing chemical bonding between the photosensitizer indocyanine green amino (ICG-NH2) and acidified single-walled carbon nanotubes (CNTs). The CNT surface was then coated with conjugates (HD) formed by the targeted modifier hyaluronic acid (HA) and 1,2-tetragacylphosphatidyl ethanolamine (DMPE). After doxorubicin hydrochloride (DOX), used as the model drug, was loaded by CNT carriers, functional nano-delivery systems (HD/CNTs-SS-ICG@DOX) were developed. Nanosystems can effectively induce tumor cell (MCF-7) death in vitro by accelerating cell apoptosis, affecting cell cycle distribution and reactive oxygen species (ROS) production. The in vivo antitumor activity results in tumor-bearing model mice, further verifying that HD/CNTs-SS-ICG@DOX inhibited tumor growth most significantly by mediating a synergistic effect between chemotherapy and PTT, while various functional nanosystems have shown good biological tissue safety. In conclusion, the composite CNT delivery systems developed in this study possess the features of high biocompatibility, targeted delivery, and responsive drug release, and can achieve the efficient coordination of chemotherapy and PTT, with broad application prospects in cancer treatment.


Asunto(s)
Doxorrubicina , Nanotubos de Carbono , Terapia Fototérmica , Microambiente Tumoral , Nanotubos de Carbono/química , Animales , Humanos , Microambiente Tumoral/efectos de los fármacos , Terapia Fototérmica/métodos , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Verde de Indocianina/química , Células MCF-7 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación , Ácido Hialurónico/química
15.
Int J Nanomedicine ; 19: 9071-9090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253059

RESUMEN

Purpose: Our study seeks to develop dual-modal organic-nanoagents for cancer therapy and real-time fluorescence imaging, followed by their pre-clinical evaluation on a murine model. Integrating NIR molecular imaging with nanotechnology, our aim is to improve outcomes for early-stage cutaneous melanoma by offering more effective and less invasive methods. This approach has the potential to enhance both photothermal therapy (PTT) and Sentinel Lymph Node Biopsy (SLNB) procedures for melanoma patients. Methods: NIR-797-isothiocyanate was encapsulated in poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) using a two-step protocol, followed by thorough characterization, including assessing loading efficiency, fluorescence stability, and photothermal conversion. Biocompatibility and cellular uptake were tested in vitro on melanoma cells, while PTT assay, with real-time thermal monitoring, was performed in vivo on tumor-bearing mice under irradiation with an 808 nm laser. Finally, ex vivo fluorescence microscopy, histopathological assay, and TEM imaging were performed. Results: Our PLGA NPs, with a diameter of 270 nm, negative charge, and 60% NIR-797 loading efficiency, demonstrated excellent stability and fluorescence properties, as well as efficient light-to-heat conversion. In vitro studies confirmed their biocompatibility and cellular internalization. In vivo experiments demonstrated their efficacy as photothermal agents, inducing mild hyperthermia with temperatures reaching up to 43.8 °C. Ex vivo microscopy of tumor tissue confirmed persistent NIR fluorescence and uniform distribution of the NPs. Histopathological and TEM assays revealed early apoptosis, immune cell response, ultrastructural damage, and intracellular material debris resulting from combined NP treatment and irradiation. Additionally, TEM analyses of irradiated zone margins showed attenuated cellular damage, highlighting the precision and effectiveness of our targeted treatment approach. Conclusion: Specifically tailored for dual-modal NIR functionality, our NPs offer a novel approach in cancer PTT and real-time fluorescence monitoring, signaling a promising avenue toward clinical translation.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Imagen Óptica , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Nanopartículas/química , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular Tumoral , Hipertermia Inducida/métodos , Humanos , Terapia Fototérmica/métodos , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Melanoma/terapia , Melanoma/diagnóstico por imagen , Fototerapia/métodos
16.
Int J Nanomedicine ; 19: 8681-8694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205867

RESUMEN

Purpose: Developing novel multimodal nanomaterials-based anticancer agents to meet complex clinical demands is an urgent challenge. This study presents a novel uniform hollow S-doped NiCuFe Prussian blue analogue (NiCuFe-S) with satisfactory size and properties as anticancer agents for efficient cervical cancer therapy using a simple and environmentally friendly procedure. Methods: The formation mechanism and the reason for enhanced performance of NiCuFe-S were characterized and discussed by diverse spectroscopic and microscopic methods. Moreover, to demonstrate the anti-cancer ability of NiCuFe-S, in vitro and in vivo experiments were carried out. Results: Compared to the non-doped NiCuFe, the NiCuFe-S exhibited significantly enhanced photothermal and catalytic activity attributed to the electronic bandgap-narrowing effect and the increased electron circuit paths resulting from S doping. The hollow structure of NiCuFe-S facilitated the loading of small-molecule drugs, such as doxorubicin (DOX), transforming it into a multimodal nanoplatform for cervical cancer treatment. In vitro and in vivo experiments proved the potential of the NiCuFe-S nanotheranostic agent for chemodynamic therapy (CDT), photothermal therapy (PTT), and chemotherapy for cervical cancer. Conclusion: This research not only overcomes inherent limitations but also significantly broadens the applications of Prussian blue analogues in biomedicine.


Asunto(s)
Antineoplásicos , Doxorrubicina , Ferrocianuros , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ferrocianuros/química , Femenino , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Ratones , Células HeLa , Terapia Fototérmica/métodos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Ratones Endogámicos BALB C
17.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201661

RESUMEN

Bacterial infection is one of the most problematic issues for human health and the resistance of bacteria to traditional antibiotics is a matter of huge concern. Therefore, research is focusing on the development of new strategies to efficiently kill these microorganisms. Recently, melanin is starting to be investigated for this purpose. Indeed, this very versatile material presents outstanding photothermal properties, already studied for photothermal therapy, which can be very useful for the light-induced eradication of bacteria. In this review, we present antibacterial melanin applications based on the photothermal effect, focusing both on the single action of melanin and on its combination with other antibacterial systems. Melanin, also thanks to its biocompatibility and ease of functionalization, has been demonstrated to be easily applicable as an antimicrobial agent, especially for the treatment of local infections.


Asunto(s)
Antibacterianos , Melaninas , Melaninas/química , Melaninas/metabolismo , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Terapia Fototérmica/métodos , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/terapia
18.
Biomater Adv ; 164: 213996, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39146604

RESUMEN

Therapeutic vaccine becomes a promising strategy to fight cancer by enhancing and sustaining specific anti-tumor immune responses. However, its efficacy is often impeded by low immunogenicity, the immunosuppressive tumor microenvironment (TME), and immune-related adverse events. Herein, we introduce 1-tetradecanol (TD)-wrapped, CpG-loaded porous Prussian blue nanoparticles (pPBNPs-CpG@TD) as a nanoimmunomodulator to initiate photothermal-induced immunogenic cell death (ICD) and photothermal-responsive release of CpG for augmenting the ICD effect. It was revealed that the dual-photothermal action significantly potentiated the in situ anti-tumor vaccine-like immunotherapy in terms of enhanced immunogenicity, promoted dendritic cell maturation, and increased T lymphocyte infiltration, consequently eliciting a robust immune response for inhibiting both primary and rechallenge tumors on a subcutaneous 4T1 tumor-bearing mouse model. The development and use of photoactive nanoimmunomodulators represents a novel and effective strategy to boost immunogenicity and counteract immunosuppressive TME, marking a significant advancement in the realm of ICD-driven in situ anti-tumor vaccine-like immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Ferrocianuros , Inmunoterapia , Nanopartículas , Animales , Ferrocianuros/química , Inmunoterapia/métodos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Ratones , Nanopartículas/química , Línea Celular Tumoral , Porosidad , Femenino , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Terapia Fototérmica/métodos , Ratones Endogámicos BALB C , Células Dendríticas/inmunología , Humanos , Factores Inmunológicos/farmacología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química
19.
Int J Biol Macromol ; 278(Pt 1): 134622, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127267

RESUMEN

Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.


Asunto(s)
Inmunoconjugados , Terapia Fototérmica , Receptor ErbB-2 , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Humanos , Terapia Fototérmica/métodos , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Ratones , Línea Celular Tumoral , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Nanopartículas/química , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Femenino , Neoplasias/terapia , Neoplasias/inmunología
20.
Int J Biol Macromol ; 278(Pt 2): 134746, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147342

RESUMEN

Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.


Asunto(s)
Materiales Biocompatibles , Rayos Infrarrojos , Terapia Fototérmica , Terapia Fototérmica/métodos , Humanos , Materiales Biocompatibles/química , Animales , Rayos Infrarrojos/uso terapéutico , Cicatrización de Heridas , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA