Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.745
Filtrar
1.
Food Chem ; 462: 140988, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216370

RESUMEN

The 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-H2O2 platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-H2O2 platform is developed for both rapid and accurate detection of analytes in foods. The prepared Au@Os NPs exhibit remarkable peroxidase-like activity, making the platform display dual absorption peaks in visible and near-infrared (NIR) regions, respectively. This Au@Os-mediated TMB-H2O2 platform exhibited three linear ranges across different concentrations of ziram from 1-100, 150-600, and 800-2000 nM with limit of detection (LOD) 7.9 nM and limit of quantification (LOQ) 24.15 nM respectively. Further, the Au@Os-mediated TMB-H2O2 platform was also used for rapid and accurate detection of ziram in real food samples like apple, tomato, and black tea.


Asunto(s)
Contaminación de Alimentos , Oro , Peróxido de Hidrógeno , Límite de Detección , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Oro/química , Contaminación de Alimentos/análisis , Bencidinas/química , Malus/química , Solanum lycopersicum/química , Té/química , Nanopartículas del Metal/química , Colorantes de Alimentos/análisis
2.
Food Chem ; 462: 141011, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226643

RESUMEN

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Asunto(s)
Antibacterianos , Ácido Clorogénico , Ácidos Cumáricos , Sinergismo Farmacológico , Shigella dysenteriae , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Shigella dysenteriae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Propionatos/farmacología , Solanum lycopersicum/química , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos
3.
Food Res Int ; 194: 114897, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232525

RESUMEN

Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.


Asunto(s)
Antioxidantes , Frutas , Minerales , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Frutas/química , Frutas/metabolismo , Minerales/análisis , Minerales/metabolismo , Metabolómica , Valor Nutritivo , Metaboloma
4.
Artículo en Inglés | MEDLINE | ID: mdl-39218133

RESUMEN

Various factors may affect the antioxidative system in insects, including xenobiotics. Glycoalkaloids (GAs) are plant secondary metabolites produced mainly by the Solanaceae family (nightshades), such as the food crop tomato Solanum lycopersicum L. These compounds exhibit a wide range of biological activities and have attracted increasing interest in the context of potential insecticide properties. Therefore, the aim of the presented study was to analyze the effects of GAs (solanine, chaconine, tomatine, and extracts of tomato leaves) on lipid peroxidation; the expression levels of genes encoding manganese superoxide dismutase (MnSOD), catalase (CAT), and heat shock protein 70 (HSP70); and the enzymatic activity of SOD and CAT in Tenebrio molitor larvae. This species is amodel organism for toxicological and ecophysiological studies and is also a pest of grain storage. The reported changes depend on the GA concentration, incubation time, and type of insect tissue. We observed that the tested GAs affected MnSOD expression levels, increased SOD activity in the fat body, and reduced enzyme activity in the gut. The results showed that CAT expression was upregulated in the fat body and that the enzymatic activity of CAT in the gut was greater in the treated group than in the control group. Moreover, GAs affected HSP70 expression and malondialdehyde levels in both tested tissues. This research contributes to our knowledge about the effects of GAs on the antioxidative system of T. molitor beetles. As efficient antioxidative system functioning is necessary for survival, the tested components may be targets of potential bioinsecticides.


Asunto(s)
Antioxidantes , Catalasa , Larva , Superóxido Dismutasa , Tenebrio , Animales , Tenebrio/metabolismo , Tenebrio/efectos de los fármacos , Antioxidantes/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Catalasa/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Alcaloides , Peroxidación de Lípido/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Insecticidas/toxicidad , Solanum lycopersicum/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tomatina/análogos & derivados , Tomatina/farmacología
5.
Physiol Plant ; 176(5): e14496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39223912

RESUMEN

The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Meristema , Solanum lycopersicum , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Mutación/genética , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(39): e2406486121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284063

RESUMEN

Realizing the full potential of genome editing for crop improvement has been slow due to inefficient methods for reagent delivery and the reliance on tissue culture for creating gene-edited plants. RNA viral vectors offer an alternative approach for delivering gene engineering reagents and bypassing the tissue culture requirement. Viruses, however, are often excluded from the shoot apical meristem, making virus-mediated gene editing inefficient in some species. Here, we developed effective approaches for generating gene-edited shoots in Cas9-expressing transgenic tomato plants using RNA virus-mediated delivery of single-guide RNAs (sgRNAs). RNA viral vectors expressing sgRNAs were either delivered to leaves or sites near axillary meristems. Trimming of the apical and axillary meristems induced new shoots to form from edited somatic cells. To further encourage the induction of shoots, we used RNA viral vectors to deliver sgRNAs along with the cytokinin biosynthesis gene, isopentenyl transferase. Abundant, phenotypically normal, gene-edited shoots were induced per infected plant with single and multiplexed gene edits fixed in the germline. The use of viruses to deliver both gene editing reagents and developmental regulators overcomes the bottleneck in applying virus-induced gene editing to dicotyledonous crops such as tomato and reduces the dependency on tissue culture.


Asunto(s)
Edición Génica , Meristema , Plantas Modificadas Genéticamente , ARN Guía de Sistemas CRISPR-Cas , Solanum lycopersicum , Solanum lycopersicum/genética , Edición Génica/métodos , Meristema/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Vectores Genéticos/genética , Sistemas CRISPR-Cas , Brotes de la Planta/genética , Brotes de la Planta/virología , Virus ARN/genética , Transferasas Alquil y Aril
7.
Sci Rep ; 14(1): 21525, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277634

RESUMEN

Manual identification of tomato leaf diseases is a time-consuming and laborious process that may lead to inaccurate results without professional assistance. Therefore, an automated, early, and precise leaf disease recognition system is essential for farmers to ensure the quality and quantity of tomato production by providing timely interventions to mitigate disease spread. In this study, we have proposed seven robust Bayesian optimized deep hybrid learning models leveraging the synergy between deep learning and machine learning for the automated classification of ten types of tomato leaves (nine diseased and one healthy). We customized the popular Convolutional Neural Network (CNN) algorithm for automatic feature extraction due to its ability to capture spatial hierarchies of features directly from raw data and classical machine learning techniques [Random Forest (RF), XGBoost, GaussianNB (GNB), Support Vector Machines (SVM), Multinomial Logistic Regression (MLR), K-Nearest Neighbor (KNN)], and stacking for classifications. Additionally, the study incorported a Boruta feature filtering layer to capture the statistically significant features. The standard, research-oriented PlantVillage dataset was used for the performance testing, which facilitates benchmarking against prior research and enables meaningful comparisons of classification performance across different approaches. We utilized a variety of statistical classification metrics to demonstrate the robustness of our models. Using the CNN-Stacking model, this study achieved the highest classification performance among the seven hybrid models. On an unseen dataset, this model achieved average precision, recall, f1-score, mcc, and accuracy values of 98.527%, 98.533%, 98.527%, 98.525%, and 98.268%, respectively. Our study requires only 0.174 s of testing time to correctly identify noisy, blurry, and transformed images. This indicates our approach's time efficiency and generalizability in images captured under challenging lighting conditions and with complex backgrounds. Based on the comparative analysis, our approach is superior and computationally inexpensive compared to the existing studies. This work will aid in developing a smartphone app to offer farmers a real-time disease diagnosis tool and management strategies.


Asunto(s)
Teorema de Bayes , Aprendizaje Profundo , Enfermedades de las Plantas , Hojas de la Planta , Solanum lycopersicum , Algoritmos , Máquina de Vectores de Soporte , Redes Neurales de la Computación , Aprendizaje Automático
8.
Mol Plant Pathol ; 25(9): e70005, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235143

RESUMEN

Plant pathogens pose a high risk of yield losses and threaten food security. Technological and scientific advances have improved our understanding of the molecular processes underlying host-pathogen interactions, which paves the way for new strategies in crop disease management beyond the limits of conventional breeding. Cross-family transfer of immune receptor genes is one such strategy that takes advantage of common plant immune signalling pathways to improve disease resistance in crops. Sensing of microbe- or host damage-associated molecular patterns (MAMPs/DAMPs) by plasma membrane-resident pattern recognition receptors (PRR) activates pattern-triggered immunity (PTI) and restricts the spread of a broad spectrum of pathogens in the host plant. In the model plant Arabidopsis thaliana, the S-domain receptor-like kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (AtLORE, SD1-29) functions as a PRR, which senses medium-chain-length 3-hydroxylated fatty acids (mc-3-OH-FAs), such as 3-OH-C10:0, and 3-hydroxyalkanoates (HAAs) of microbial origin to activate PTI. In this study, we show that ectopic expression of the Brassicaceae-specific PRR AtLORE in the solanaceous crop species Solanum lycopersicum leads to the gain of 3-OH-C10:0 immune sensing without altering plant development. AtLORE-transgenic tomato shows enhanced resistance against Pseudomonas syringae pv. tomato DC3000 and Alternaria solani NL03003. Applying 3-OH-C10:0 to the soil before infection induces resistance against the oomycete pathogen Phytophthora infestans Pi100 and further enhances resistance to A. solani NL03003. Our study proposes a potential application of AtLORE-transgenic crop plants and mc-3-OH-FAs as resistance-inducing biostimulants in disease management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Ácidos Grasos , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Ácidos Grasos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/patogenicidad , Inmunidad de la Planta , Plantas Modificadas Genéticamente
9.
Sci Rep ; 14(1): 20516, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227423

RESUMEN

Tomato pomace, the main by-product of tomato processing, is also an underestimated source of many active substances. This study aimed to determine the possibility of using oil obtained from tomato pomace in a face cream formulation. The bacterial community structure, face skin biophysical parameters and protection against air pollution were examined after daily application of the cosmetic by volunteers. In the tomato pomace oil, the profile of fatty acids was determined by GC‒MS, and the profile of volatile compounds was determined using the HS-SPME technique. The dominant bioactive component in the oil was linoleic acid (63.6%), and among the volatile compounds, it was carvotanacetone (25.8%). The application of the cream with tomato pomace oil resulted in an increase in the dominant genera Staphylococcus, Anaerococcus and Cutibacterium in the epibiome, particularly beneficial Staphylococcus epidermidis, while limiting the growth of the potentially opportunistic pathogens Kocuria spp., Micrococcus spp., Veillonella spp., and Rothia spp. This study showed the usefulness of tomato pomace oil as a natural ingredient in skin care cosmetics, reducing skin inflammation, sensitivity and melanin level, with potential protective effects against air pollution and microbiome-balance properties. Tomato pomace, which is commonly considered waste after tomato processing, can be used in the development of new cosmetics and may additionally contribute to reducing environmental nuisance.


Asunto(s)
Microbiota , Solanum lycopersicum , Solanum lycopersicum/microbiología , Microbiota/efectos de los fármacos , Humanos , Femenino , Adulto , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacología , Crema para la Piel/farmacología , Persona de Mediana Edad , Piel/microbiología , Piel/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/clasificación , Aceites de Plantas/farmacología , Masculino
10.
Plant Physiol Biochem ; 215: 109008, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226760

RESUMEN

Transcription factors (TFs) are crucial for regulating fruit ripening in tomato (Solanum lycopersicum). The GRAS (GAI, RGA, and SCR) TFs are involved in various physiological processes, but their role in fruit ripening has seldom been reported. We have previously identified a gene encoding GRAS protein named SlFSR (Fruit Shelf-life Regulator), which is implicated in fruit ripening by regulating cell wall metabolism; however, the underlying mechanism remains unclear. Here, we demonstrate that SlFSR proteins are localized to the nucleus, where they could bind to specific DNA sequences. SlFSR acts downstream of the master ripening regulator RIN and could collaborate with RIN to control the ripening process by regulating expression of ethylene biosynthesis genes. In SlFSR-CR (CRISPR/Cas9) mutants, the initiation of fruit ripening was not affected but the reduced ethylene production and a delayed coloring process occurred. RNA-sequencing (RNA-seq) and promoter analysis reveal that SlFSR directly binds to the promoters of two key ethylene biosynthesis genes (SlACO1 and SlACO3) and activates their expression. However, SlFSR-CR fruits displayed a significant down-regulation of key rate-limiting genes (SlDXS1 and SlGGPPS2) in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which may account for the impaired lycopene synthesis. Altogether, we propose that SlFSR positively regulates ethylene biosynthesis and lycopene accumulation, providing valuable insights into the molecular mechanisms underlying fruit ripening.


Asunto(s)
Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Licopeno , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Etilenos/metabolismo , Etilenos/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Licopeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
11.
Environ Sci Technol ; 58(37): 16282-16290, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236339

RESUMEN

To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.


Asunto(s)
Microplásticos , Oligoquetos , Animales , Oligoquetos/fisiología , Productos Agrícolas , Insectos , Contaminantes del Suelo , Solanum lycopersicum
12.
J Environ Manage ; 369: 122370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236605

RESUMEN

Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.


Asunto(s)
Piretrinas , Plantones , Silicio , Solanum lycopersicum , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Piretrinas/toxicidad , Silicio/farmacología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Insecticidas/toxicidad
13.
Pestic Biochem Physiol ; 204: 106028, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277356

RESUMEN

The destructive disease gray leaf spot, caused by Stemphylium solani, is prevalent in tomato plants in China. A variety of fungicides have been extensively used for controlling the disease, with a particular focus on succinate dehydrogenase inhibitors (SDHIs) and quinone outside inhibitors (QoIs). However, there was a lack of information regarding the resistance of S. solani to boscalid (SDHI) and pyraclostrobin (QoI) in China. In this study, the sensitivity of S. solani to boscalid and pyraclostrobin was monitored. The EC50 values for boscalid ranged from 0.02 to 3.0 µg∙mL-1, with an average value of 0.62 µg∙mL-1, while the EC50 values for pyraclostrobin ranged from 0.21 to 14.71 µg∙mL-1, with an average value of 6.03 µg∙mL-1. Based on these findings, the frequencies of observed resistance were as follows: 36.7% for boscalid and 50% for pyraclostrobin; while the resistance frequency to both boscalid and pyraclostrobin in S. solani was 19.4%. The mutation associated with boscalid resistance in S. solani within tomato fields was identified as SdhB-H277Y, while the mutation related to pyraclostrobin resistance was found in cytochrome b, specifically Cytb-G143A. The resistant mutants displayed diminished fitness in terms of mycelial growth, yet their pathogenicity exhibited no significant disparities. To delay the development of resistance, it is advisable to employ a rotation strategy using alternative fungicides with different modes of action or mix with fungicides with multi-site-contact activity for disease management.


Asunto(s)
Ascomicetos , Compuestos de Bifenilo , Farmacorresistencia Fúngica , Fungicidas Industriales , Niacinamida , Enfermedades de las Plantas , Solanum lycopersicum , Estrobilurinas , Estrobilurinas/farmacología , Solanum lycopersicum/microbiología , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Niacinamida/farmacología , Niacinamida/análogos & derivados , Farmacorresistencia Fúngica/genética , China , Compuestos de Bifenilo/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/patogenicidad
14.
Pestic Biochem Physiol ; 204: 106060, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277378

RESUMEN

Chlorantraniliprole (CAP) is applied worldwide for the control of caterpillars (Lepidoptera). However, with the overuse of CAP, the resistance problem in pest control is becoming increasingly serious. Recent studies have indicated a central role of the gut symbiont in insect pest resistance to pesticides and these may apply to the tomato leaf miner Tuta absoluta, is one of the most destructive insects worldwide. Here, we successfully isolated seven strains of tolerant CAP bacterium from the CAP-resistant T. absoluta gut, of which Enterococcus mundtii E14 showed the highest CAP tolerance, with a minimum inhibitory concentration (MIC) of 1.6 g/L and CAP degradation rate of 42.4%. Through transcriptomics and metabolism analysis, we studied the detoxification process of CAP by the E. mundtii E14, and found that CAP can be degraded by E. mundtii E14 into non-toxic compounds, such as 3,4-dihydroxy-2-(5-hydroxy-3,7-dimethylocta-2,6-dien-1-yl) benzoic acid and 2-pyridylacetic acid. Additionally, 2-pyridylacetic acid was detected both intracellular and extracellular in E. mundtii E14 treated with CAP. Meanwhile, we identified 52 up-regulated genes, including those associated with CAP degradation, such as RS11670 and RS19130. Transcriptome results annotated using KEGG indicated significant enrichment in up-regulated genes related to the glyoxylate cycle, nitrogen metabolism, and biosynthesis of secondary metabolites. Additionally, we observed that reinfection with E. mundtii E14 may effectively enhance resistance of T. absoluta to CAP. The LC50 values of the antibiotic treatment population of T. absoluta reinfection with E. mundtii E14 is 0.6122 mg/L, which was 18.27 folds higher than before reinfection. These findings offer new insights into T. absoluta resistance to CAP and contribute to a better understanding of the relationship between insecticide resistance and gut symbionts of T. absoluta, which may play a pivotal role in pest management.


Asunto(s)
Enterococcus , Insecticidas , ortoaminobenzoatos , Animales , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/metabolismo , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Enterococcus/genética , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Solanum lycopersicum/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
15.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277395

RESUMEN

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Asunto(s)
Hemípteros , Insecticidas , Liposomas , Sesquiterpenos Policíclicos , Animales , Hemípteros/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/química , Insecticidas/farmacología , Insecticidas/química , Nanopartículas/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Solanum lycopersicum/parasitología , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
16.
Pestic Biochem Physiol ; 204: 106089, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277402

RESUMEN

The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.


Asunto(s)
Insecticidas , Larva , Hojas de la Planta , Interferencia de ARN , Solanum lycopersicum , Animales , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/genética , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Resistencia a los Insecticidas/genética , Piretrinas
17.
Sci Rep ; 14(1): 21281, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261582

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) poses a significant threat to tomato production worldwide, prompting extensive research into its genetic diversity, evolutionary dynamics, and adaptive strategies. In this study, we conducted a comprehensive analysis of ToBRFV at the codon level, focusing on codon usage bias, selection pressures, and evolutionary patterns across multiple genes. Our analysis revealed distinct patterns of codon usage bias and selection pressures within the ToBRFV genome, with varying levels of genetic diversity and evolutionary constraints among different genes. We observed a transition/transversion bias of 2.07 across the entire ToBRFV genome, with the movement protein (MP) gene exhibiting the highest transition/transversion bias and SNP density, suggesting potential evolutionary pressures or a higher mutation rate in this gene. Furthermore, our study identified episodic positive selection primarily in the MP gene, highlighting specific codons subject to adaptive changes in response to host immune pressures or environmental factors. Comparative analysis of codon usage bias in the coat protein (CP) and RNA-dependent RNA polymerase (RdRp) genes revealed gene-specific patterns reflecting functional constraints and adaptation to the host's translational machinery. Our findings provide valuable insights into the molecular mechanisms driving ToBRFV evolution and adaptation, with implications for understanding viral pathogenesis, host-virus interactions, and the development of control strategies. Future research directions include further elucidating the functional significance of codon usage biases, exploring the role of episodic positive selection in viral adaptation, and leveraging these insights to inform the development of effective antiviral strategies and crop protection measures.


Asunto(s)
Uso de Codones , Evolución Molecular , Genoma Viral , Solanum lycopersicum , Solanum lycopersicum/virología , Solanum lycopersicum/genética , Selección Genética , Adaptación Fisiológica/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Codón/genética , Variación Genética
18.
Sci Prog ; 107(3): 368504241275371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262392

RESUMEN

Computer-advanced technologies have a significant impact across various fields. It is widely recognized that diseases have a detrimental effect on crop productivity and can significantly impact the economy, particularly in agricultural countries. Tomatoes hold great economic importance among cash crops, second only to potatoes. Globally, tomato production reaches a staggering 160 million tons annually, making it even more crucial for agricultural development. Unfortunately, the tomato crop is susceptible to several diseases, with early blight and late blight as two prominent culprits responsible for a production decrease of around 79%. Traditional disease detection and identification methods are time-consuming, expensive, and destructive, often requiring pathologists' expertise. Thus, the primary research objective is to enhance disease identification accuracy by leveraging deep learning techniques. A model based on the inception-V3 architecture has been devised to classify diseases affecting tomato plant leaves. The model was trained and tested using the PlantVillage dataset, which comprises 6000 sample images of tomato leaves. The training and testing process utilized an 80 : 20 ratio, resulting in an impressive classification accuracy of 97.44% for the proposed model. The proposed solution aims to enable the tomato industry to thrive in the global market by mitigating the impact of tomato leaf diseases. By reducing the prevalence of these diseases, the solution can increase demand and contribute to the industry's growth.


Asunto(s)
Redes Neurales de la Computación , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/estadística & datos numéricos , Agricultura/métodos , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Hojas de la Planta/microbiología
19.
Sci Rep ; 14(1): 21362, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266588

RESUMEN

The gut microbiome of worms from composting facilities potentially harbors organisms that are beneficial to plant growth and development. In this experiment, we sought to examine the potential impacts of rhizosphere microbiomes derived from Eisenia fetida worm castings (i.e. vermicompost) on tomato (Solanum lycopersicum, L.) plant growth and physiology. Our experiment consisted of a greenhouse trial lasting 17 weeks total in which tomato plants were grown with one of three inoculant treatments: a microbial inoculant created from vermicompost (V), a microbial inoculant created from sterilized vermicompost (SV), and a no-compost control inoculant (C). We hypothesized that living microbiomes from the vermicompost inoculant treatment would enhance host plant growth and gene expression profiles compared to plants grown in sterile and control treatments. Our data showed that bacterial community composition was significantly altered in tomato rhizospheres, but fungal community composition was highly variable in each treatment. Plant phenotypes that were significantly enhanced in the vermicompost and sterile vermicompost treatments, compared to the control, included aboveground biomass and foliar δ15N nitrogen. RNA sequencing revealed distinct gene expression changes in the vermicompost treatment, including upregulation of nutrient transporter genes such as Solyc06g074995 (high affinity nitrate transporter), which exhibited a 250.2-fold increase in expression in the vermicompost treatment compared to both the sterile vermicompost and control treatments. The plant transcriptome data suggest that rhizosphere microbiomes derived from vermicompost can influence tomato gene expression and growth-related regulatory pathways, which highlights the value of RNA sequencing in uncovering molecular responses in plant microbiome studies.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Microbiota/genética , Regulación de la Expresión Génica de las Plantas , Animales , Compostaje , Bacterias/genética , Bacterias/clasificación , Oligoquetos/microbiología , Oligoquetos/genética , Raíces de Plantas/microbiología , Raíces de Plantas/genética
20.
Nat Commun ; 15(1): 8013, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271661

RESUMEN

Enhancing drought tolerance in crops and understanding the underlying mechanisms have been subject of intense research. The precise function and molecular mechanisms of B-box zinc finger proteins (BBX) remain elusive. Here, we report a natural allele of BBX18 (BBX18TT) that encodes a C-terminal truncated protein. While most wild tomato germplasms contain the BBX18CC allele and show more drought tolerant, modern cultivated tomatoes mostly carry BBX18TT allele and are more drought sensitive. Knockout of BBX18 leads to improved drought tolerance in transgenic plants of cultivated tomato. Ascorbate peroxidase 1 (APX1) is identified as a BBX18-interacting protein that acts as a positive regulator of drought resistance in tomato. Chromatin immunoprecipitation sequencing analyses reveal that BBX18 binds to a unique cis-acting element of the APX1 promoter and represses its gene expression. This study provides insights into the molecular mechanism underlying drought resistance mediated by the BBX18-APX1 module in plants.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Solanum lycopersicum , Factores de Transcripción , Dedos de Zinc , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc/genética , Regiones Promotoras Genéticas/genética , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Alelos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA