RESUMEN
Beyond its clinical diversity and severity, acute myeloid leukemia (AML) is known for its complex molecular background and for rewiring biological processes to aid disease onset and maintenance. FLT3 mutations are among the most recurring molecular entities that cooperatively drive AML, and their inhibition is a critical molecularly oriented therapeutic strategy. Despite being a promising avenue, it still faces challenges such as intrinsic and acquired drug resistance, which led us to investigate whether and how autophagy and inflammasome interact and whether this interaction could be leveraged to enhance FLT3 inhibition as a therapeutic strategy. We observed a strong and positive correlation between the expression of key genes associated with autophagy and the inflammasome. Gene set enrichment analysis of the FLT3-ITD samples and their ex vivo response to five different FLT3 inhibitors revealed a common molecular signature compatible with autophagy and inflammasome activation across all poor responders. Inflammasome activation was also shown to strongly increase the likelihood of a poor ex vivo response to the FLT3 inhibitors quizartinib and sorafenib. These findings reveal a distinct molecular pattern within FLT3-ITD AML samples that underscores the necessity for further exploration into how approaching these supportive parallel yet altered pathways could improve therapeutic strategies.
Asunto(s)
Autofagia , Inflamasomas , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Autofagia/efectos de los fármacos , Inflamasomas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Femenino , Masculino , Benzotiazoles/farmacología , Persona de Mediana Edad , Sorafenib/farmacología , Resistencia a Antineoplásicos/genética , Anciano , Compuestos de FenilureaRESUMEN
We aimed to find new therapeutic targets related to Cancer Stem Cell alterations in recurrent patients from two TCGA cohorts: Testicular Germ Cell Tumor (TGCT) and Uterine Corpus Endometrial Carcinoma (UCEC). Raw sequencing data were downloaded from the TCGA database. Datasets containing RNA expression and Methylation files were directly downloaded from cBioportal. Variant Call Format files (VCFs) were downloaded from the GDC portal. Gene enrichment analysis was performed using GSEA (Gene Set Enrichment Analysis) software. Transcriptome profiling, coexpression co-occurrence, networks, and survival analyses were performed using cBioportal tools, while mutational analysis of patients was processed using UNIX scripts. We found that cancer stem cell transcription factors were highly expressed in Testicular Germ Cell Tumor (TGCT) and Uterine Corpus Endometrial Carcinoma (UCEC) cohorts, compared to the other 29 cancer cohorts in TCGA. Patients presented a poorer diagnosis when the genes (POU5F1, NANOG, SOX2, SALL4, ABCB1, ABCC1, and ABCG2) were altered. In UCEC cohorts, recurrent patients showed the ABCG2 potentially phosphorylated by the PIM1 kinase. In the TGCT cohort, genes ABCB1 and ABCG2 only appeared in the phosphonetwork in recurrent patients potentially phosphorylated by the same kinase, PIM1, but also by PRKACA. Our data indicate that PRKACA and PIM1 may modulate POU5F1 phosphorylation.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Femenino , Neoplasias Testiculares/genética , Neoplasias Testiculares/tratamiento farmacológico , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Estudios de Cohortes , Neoplasias Uterinas/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genéticaRESUMEN
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Asunto(s)
Daño del ADN , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , MicroARNs , Fosfohidrolasa PTEN , ARN Largo no Codificante , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Transición Epitelial-Mesenquimal/genética , Resistencia a Antineoplásicos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/genética , Transducción de SeñalRESUMEN
Gastric cancer is the fourth leading cause of cancer deaths worldwide. The presence of chemoresistant cells has been used to explain this high mortality rate. These higher tumorigenic and chemoresistant cells involve cancer stem cells (CSCs), which have the potential for self-renewal, a cell differentiation capacity, and a greater tumorigenic capacity. Our research group identified gastric cancer stem cells (GCSCs) with the CD24+CD44+CD326+ICAM1+ immunophenotype isolated from gastric cancer patients. Interestingly, this GCSC immunophenotype was absent in cells isolated from healthy people, who presented a cell population with a CD24+CD44+CD326+ immunophenotype, lacking ICAM1. We aimed to explore the role of ICAM1 in these GCSCs; for this purpose, we isolated GCSCs from the AGS cell line and generated a GCSC line knockout for ICAM1 using CRISPR/iCas9, which we named GCSC-ICAM1KO. To assess the role of ICAM1 in the GCSCs, we analyzed the migration, invasion, and chemoresistance capabilities of the GCSCs using in vitro assays and evaluated the migratory, invasive, and tumorigenic properties in a zebrafish model. The in vitro analysis showed that ICAM1 regulated STAT3 activation (pSTAT3-ser727) in the GCSCs, which could contribute to the ability of GCSCs to migrate, invade, and metastasize. Interestingly, we demonstrated that the GCSC-ICAM1KO cells lost their capacity to migrate, invade, and metastasize, but they exhibited an increased resistance to a cisplatin treatment compared to their parental GCSCs; the GCSC-ICAM1KO cells also exhibited an increased tumorigenic capability in vivo.
Asunto(s)
Movimiento Celular , Resistencia a Antineoplásicos , Molécula 1 de Adhesión Intercelular , Células Madre Neoplásicas , Neoplasias Gástricas , Pez Cebra , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Metástasis de la Neoplasia , Cisplatino/farmacologíaRESUMEN
lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Terapia Neoadyuvante , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , TranscriptomaRESUMEN
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Asunto(s)
Adenosina Desaminasa , Neoplasias de la Mama , Edición de ARN , Proteínas de Unión al ARN , Humanos , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Resistencia a Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animales , Guanosina/metabolismo , Daño del ADNRESUMEN
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.
Asunto(s)
Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Fosfohidrolasa PTEN , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factor de Transcripción YY1 , Humanos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , FemeninoRESUMEN
Imatinib is the tyrosine kinase inhibitor used as the gold standard for the treatment of Chronic Myeloid Leukemia. However, about 30% of patients do not respond well to this therapy. Variants in drug administration, distribution, metabolism and excretion (ADME) genes play an important role in drug resistance especially in admixed populations. We investigated 129 patients diagnosed with Chronic Myeloid Leukemia treated with imatinib as first choice therapy. The participants of the study are highly admixed, populations that exhibit genetic diversity and complexity due to the contributions of multiple ancestral groups. Thus, the aim of this work was to investigate the association of 30 SNVs in genes related to response to treatment with Imatinibe in CML. Our results indicated that for the rs2290573 of the ULK3 gene, patients with the recessive AA genotype are three times more likely to develop resistance over time (secondary resistance) (p = 0.019, OR = 3.19, IC 95%= 1.21-8.36). Finally, we performed interaction analysis between the investigated variants and found several associations between SNVs and secondary resistance. We concluded that the variant rs2290573 of the ULK3 gene may be relevant for predicting treatment response of CML with imatinib, as well as possible treatment resistance. The use of predictive biomarkers is an important tool for therapeutic choice of patients, improving their quality of life and treatment efficacy.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva , Polimorfismo de Nucleótido Simple , Inhibidores de Proteínas Quinasas , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Resistencia a Antineoplásicos/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéutico , Anciano , Farmacogenética , Genotipo , Adulto JovenRESUMEN
LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Femenino , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Biología Computacional/métodos , Daño del ADN , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Células MCF-7 , Pronóstico , ARN Largo no Codificante/genéticaRESUMEN
Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.
Asunto(s)
Neoplasias de la Vesícula Biliar , Regulación Neoplásica de la Expresión Génica , MicroARNs , Factor 3 de Transcripción de Unión a Octámeros , ARN Largo no Codificante , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Femenino , Transición Epitelial-Mesenquimal/genética , Resistencia a Antineoplásicos/genética , Masculino , Invasividad Neoplásica , Cisplatino/farmacología , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fluorouracilo/farmacología , Metástasis LinfáticaRESUMEN
Selpercatinib, a selective RET kinase inhibitor, has demonstrated remarkable efficacy in treating patients with advanced medullary (MTC) and differentiated thyroid cancer with RET alterations. Primary resistance to selpercatinib is a very uncommon situation, and its underlying mechanisms are poorly understood. We report the case of a 42-year-old female with advanced MTC harboring a somatic M918T RET mutation who exhibited a primary resistance to selpercatinib. Despite prompt treatment initiation after the diagnosis of progressive disease, the patient continued experiencing rapid spread of disease, characterized by the appearance of new metastatic lesions and increased tumor burden. Genomic analysis revealed no additional mutations associated with on-target or off-target resistance. This case highlights a rare clinical scenario of primary resistance to selpercatinib in advanced MTC. While secondary resistance mechanisms have been well-documented, primary resistance remains poorly understood. Possible explanations include tumor heterogeneity and activation of alternative signaling pathways that stills need to be elucidated. Emerging therapies targeting resistance mechanisms and next-generation RET inhibitors offer promising avenues for further investigation.
Asunto(s)
Carcinoma Neuroendocrino , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-ret , Neoplasias de la Tiroides , Humanos , Femenino , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Adulto , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéuticoRESUMEN
Cisplatin is widely employed for cancer treatment; therefore, understanding resistance to this drug is critical for therapeutic practice. While studies have delved into differential gene expression in the context of cisplatin resistance, findings remain somewhat scant. We performed a comprehensive investigation of transposable elements (TEs) expression and their impact in host genes in two cisplatin-treated ovarian cancer cell lines. RNA-seq, ATAC-seq, and in-depth bioinformatics analysis were used to compare cisplatin-sensitive and -resistant ovarian cancer cell lines. Our results reveal that cisplatin therapy alters not only the expression of protein-coding genes, but also key TEs, including LINE1, Alu, and endogenous retroviruses, in both cisplatin-sensitive and -resistant cell lines. By co-expressing with downstream genes or by creating chimeric transcripts with host genes at their insertion sites, these TEs seem to control the expression of protein-coding genes, including tumor-related genes. Our model uncovers TEs influencing the expression of cancer genes and cancer pathways. Collectively, our findings indicate that TE alterations associated with cisplatin treatment occur in critical cancer genes and cellular pathways synergically. This research highlights the importance of considering the entire spectrum of transcribed elements in the genome, especially TE expression, for a complete understanding of complex models like cancer response to treatment.
Asunto(s)
Cisplatino , Elementos Transponibles de ADN , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Elementos Transponibles de ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
The complex evolution of genetic alterations in cancer that occurs in vivo is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumorcell metabolism, thus creating a bottleneck event. The few resistant cells that survive in this new environment obtain differential reproductive success that enables them to pass down the newly selected resistant gene pool. The present review aims to summarize key findings of tumor evolution, epithelialmesenchymal transition and resistance to cetuximab therapy in head and neck squamous cell carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genéticaRESUMEN
BACKGROUND: The pattern of cell death known as disulfidptosis was recently discovered. Disulfidptosis, which may affect the growth of tumor cells, represents a potential new approach to treating tumors. Glycolysis affects tumor proliferation, invasion, chemotherapy resistance, the tumor microenvironment (TME), and immune evasion. However, the efficacy and therapeutic significance of disulfidptosis-related glycolysis genes (DRGGs) in stomach adenocarcinoma (STAD) remain uncertain. METHODS: STAD clinical data and RNA sequencing data were downloaded from the TCGA database. DRGGs were screened using Cox regression and Lasso regression analysis to construct a prognostic risk model. The accuracy of the model was verified using survival studies, receiver operating characteristic (ROC) curves, column plots, and calibration curves. Additionally, our study investigated the relationships between the risk scores and immune cell infiltration, tumor mutational burden (TMB), and anticancer drug sensitivity. RESULTS: We have successfully developed a prognosis risk model with 4 DRGGs (NT5E, ALG1, ANKZF1, and VCAN). The model showed excellent performance in predicting the overall survival of STAD patients. The DRGGs prognostic model significantly correlated with the TME, immune infiltrating cells, and treatment sensitivity. CONCLUSIONS: The risk model developed in this work has significant clinical value in predicting the impact of immunotherapy in STAD patients and assisting in the choice of chemotherapeutic medicines. It can correctly estimate the prognosis of STAD patients.
Asunto(s)
Adenocarcinoma , Glucólisis , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Humanos , Glucólisis/genética , Pronóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Femenino , Masculino , Curva ROC , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Resistencia a Antineoplásicos/genética , Linfocitos Infiltrantes de Tumor/inmunologíaRESUMEN
OBJECTIVES: Comprehensive cross-interaction of multiple programmed cell death (PCD) patterns in the patients with lung adenocarcinoma (LUAD) have not yet been thoroughly investigated. METHODS: Here, we collected 19 different PCD patterns, including 1911 PCD-related genes, and developed an immune-derived multiple programmed cell death index (MPCDI) based on machine learning methods. RESULTS: Using the median MPCDI scores, we categorized the LUAD patients into two groups: low-MPCDI and high-MPCDI. Our analysis of the TCGA-LUAD training cohort and three external GEO cohorts (GSE37745, GSE30219, and GSE68465) revealed that patients with high-MPCDI experienced a more unfavorable prognosis, whereas those with low-MPCDI had a better prognosis. Furthermore, the results of both univariate and multivariate Cox regression analyses further confirmed that MPCDI serves as a novel independent risk factor. By combining clinical characteristics with the MPCDI, we constructed a nomogram that provides an accurate and reliable quantitative tool for personalized clinical management of LUAD patients. The findings obtained from the analysis of C-index and the decision curve revealed that the nomogram outperformed various clinical variables in terms of net clinical benefit. Encouragingly, the low-MPCDI patients are more sensitive to commonly used chemotherapy drugs, which suggests that MPCDI scores have a guiding role in chemotherapy for LUAD patients. CONCLUSION: Therefore, MPCDI can be used as a novel clinical diagnostic classifier, providing valuable insights into the clinical management and clinical decision-making for LUAD patients.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Aprendizaje Automático , Nomogramas , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genéticaRESUMEN
Cytokines are proteins that act in the immune response and inflammation and have been associated with the development of some types of cancer, such as gastric cancer (GC). GC is a malignant neoplasm that ranks fifth in incidence and third in cancer-related mortality worldwide, making it a major public health issue. Recent studies have focused on the role these cytokines may play in GC associated with angiogenesis, metastasis, and chemoresistance, which are key factors that can affect carcinogenesis and tumor progression, quality, and patient survival. These inflammatory mediators can be regulated by epigenetic modifications such as DNA methylation, histone protein modification, and non-coding RNA, which results in the silencing or overexpression of key genes in GC, presenting different targets of action, either direct or mediated by modifications in key genes of cytokine-related signaling pathways. This review seeks insight into the relationship between cytokine-associated epigenetic regulation and its potential effects on the different stages of development and chemoresistance in GC.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Epigénesis Genética , Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , AngiogénesisRESUMEN
Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.
Asunto(s)
Neoplasias Colorrectales , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Colorrectales/genética , Recurrencia Local de Neoplasia , Células HT29 , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Autofagia , Línea Celular Tumoral , Resistencia a Antineoplásicos/genéticaRESUMEN
Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.
Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas de Transporte de Membrana , Terapia Neoadyuvante , Estudios Retrospectivos , Miembro 1 de la Familia de Transportadores de Soluto 12RESUMEN
Leukemias of the AML, CML, and CLL types are the most common blood cancers worldwide, making them a major global public health problem. Furthermore, less than 24% of patients treated with conventional chemotherapy (low-risk patients) and 10-15% of patients ineligible for conventional chemotherapy (high-risk patients) survive five years. The low levels of survival are mainly due to toxicity and resistance to chemotherapy or other medication, the latter leading to relapse of the disease, which is the main obstacle to the treatment of leukemia. Drug resistance may include different molecular mechanisms, among which epigenetic regulators are involved. Silent information regulator 2 homolog 1 (SIRT1) is an epigenetic factor belonging to the sirtuin (SIRT) family known to regulate aspects of chromatin biology, genome stability, and metabolism, both in homeostasis processes and in different diseases, including cancer. The regulatory functions of SIRT1 in different biological processes and molecular pathways are dependent on the type and stage of the neoplasia; thus, it may act as both an oncogenic and tumor suppressor factor and may also participate in drug resistance. In this review, we explore the role of SIRT1 in drug-resistant leukemia and its potential as a therapeutic target.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Hematológicas , Leucemia , Sirtuina 1 , Humanos , Cromatina , Resistencia a Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/genética , Leucemia/terapia , Sirtuina 1/genética , Sirtuina 1/metabolismoRESUMEN
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.