Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.617
Filtrar
1.
Physiol Plant ; 176(5): e14488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228009

RESUMEN

As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.


Asunto(s)
Acetatos , Ciclopentanos , Flavonoides , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxilipinas , Hojas de la Planta , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Acetatos/farmacología , Flavonoides/metabolismo , Metaboloma/efectos de los fármacos , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Asparagaceae/genética , Asparagaceae/metabolismo , Asparagaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Physiol Plant ; 176(5): e14531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39284740

RESUMEN

Flowering, the change from vegetative development to the reproductive phase, represents a crucial and intricate stage in the life cycle of plants, which is tightly controlled by both internal and external factors. In this study, we investigated the effect of Ascophyllum nodosum extract (ANE) on the flowering time of Arabidopsis. We found that a 0.1% concentration of ANE induced flowering in Arabidopsis, accompanied by the upregulation of key flowering time genes: FT (FLOWERING LOCUS T), SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), and LFY (LEAFY). Further investigation showed that ANE specifically promotes flowering through the MIR156-mediated age pathway. ANE treatment resulted in the repression of negative regulator genes, MIR156, while simultaneously enhancing the expression of positive regulator genes, including SPLs and MIR172. This, in turn, led to the downregulation of AP2-like genes, which are known as floral repressors. It is worth noting that ANE did not alleviate the late flowering phenotype of MIR156-overexpressing plants and spl mutants. Furthermore, ANE-derived fucoidan mimics the function of sugars in regulating MIR156, closely mirroring the effects induced by ANE treatments. It suppresses the transcript levels of MIR156 and AP2-like genes while inducing those of SPLs and MIR172, thereby reinforcing the involvement of fucoidan in the control of flowering by ANE. In summary, our results demonstrate that ANE induces flowering by modulating the MIR156-SPL module within the age pathway, and this effect is mediated by fucoidan.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascophyllum , Flores , Regulación de la Expresión Génica de las Plantas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Flores/efectos de los fármacos , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Extractos Vegetales/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Commun ; 15(1): 8077, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277642

RESUMEN

Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinación , Semillas , Germinación/efectos de los fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Cristalografía por Rayos X , Sulfonamidas/farmacología , Sulfonamidas/química , Proteínas de Transporte de Membrana
4.
Proc Natl Acad Sci U S A ; 121(37): e2322217121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39240965

RESUMEN

Root exudates are known signaling agents that influence legume root nodulation, but the molecular mechanisms for nonflavonoid molecules remain largely unexplored. The number of soybean root nodules during the initial growth phase shows substantial discrepancies at distinct developmental junctures. Using a combination of metabolomics analyses on root exudates and nodulation experiments, we identify a pivotal role for certain root exudates during the rapid growth phase in promoting nodulation. Phenoxyacetic acid (POA) was found to activate the expression of GmGA2ox10 and thereby facilitate rhizobial infection and the formation of infection threads. Furthermore, POA exerts regulatory control on the miR172c-NNC1 module to foster nodule primordia development and consequently increase nodule numbers. These findings collectively highlight the important role of POA in enhancing nodulation during the accelerated growth phase of soybeans.


Asunto(s)
Glycine max , Nodulación de la Raíz de la Planta , Simbiosis , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/microbiología , Glycine max/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroARNs/metabolismo , MicroARNs/genética , Acetatos/metabolismo , Acetatos/farmacología
5.
Pestic Biochem Physiol ; 204: 106041, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277368

RESUMEN

Benzothiadiazole (BTH) regulates grape development, ripening, volatiles, and phenolics. This study used metabolomics and transcriptomics to understand how exogenous BTH affects Chardonnay grapes' maturation and synthesis of isoprenoids. A 0.37 mM BTH solution was sprayed during the swelling and veraison stages, and then the ripe grapes were analyzed. Our results show that BTH application significantly increased levels of important isoprenoids such as free terpinen-4-ol, bound linalool, and 8'-apo-ß-carotenal. Additionally, BTH was found to modulate several signaling pathways, including those involved in ethylene biosynthesis, salicylic acid synthesis, the abscisic acid pathway, and sugar metabolism, by regulating the expression of genes like VvACO4, VvTAR, VvPLD, VvTIP1-1, VvSTKs, VvPK, VvSUC2, VvGST4, and VvSTS. BTH also promoted grapevine resistance by up-regulating the expression of VvHSP20, VvGOLS4, VvOLP, and VvPR-10. Furthermore, BTH affected isoprenoids biosynthesis by regulating the expression of VvTPS35 and VvMYB24. Moreover, 13 hub genes in the MEgreen module were identified as crucial for the biosynthesis of isoprenoids. BTH application during the swelling stage remarkably promoted isoprenoid biosynthesis more effectively than veraison. Our study provides insights into the molecular mechanisms underlying BTH-induced regulation of grape development and offers a promising approach for enhancing the quality and resistance of grapes.


Asunto(s)
Frutas , Terpenos , Tiadiazoles , Transcriptoma , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Terpenos/metabolismo , Tiadiazoles/farmacología , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Pestic Biochem Physiol ; 204: 106099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277422

RESUMEN

Echinochloa crus-galli (L.) P. Beauv is a monocotyledonous weed that seriously infests rice fields. Florpyrauxifen-benzyl, a novel synthetic auxin herbicide commercialized in China in 2018, is an herbicide for controlling E. crus-galli. However, a suspected resistant population (R) collected in 2012 showed resistance to the previously unused florpyrauxifen-benzyl. Whole-plant dose-response bioassay indicated that the R population evolved high resistance to quinclorac and florpyrauxifen-benzyl. Pretreatment with P450 inhibitors did not influence the GR50 of E. crus-galli to florpyrauxifen-benzyl. The expression of target receptor EcAFB4 was down-regulated in the R population, leading to the reduced response to florpyrauxifen-benzyl (suppresses over-production of ethylene and ABA). We verified this resistance mechanism in the knockout OsAFB4 in Oryza sativa L. The Osafb4 mutants exhibited high resistance to florpyrauxifen-benzyl and moderate resistance to quinclorac. Furthermore, DNA methylation in the EcAFB4 promoter regulated its low expression in the R population after florpyrauxifen-benzyl treatment. In summary, the low expression of the auxin receptor EcAFB4 confers target resistance to the synthetic auxin herbicide florpyrauxifen-benzyl in the R- E. crus-galli.


Asunto(s)
Echinochloa , Resistencia a los Herbicidas , Herbicidas , Proteínas de Plantas , Echinochloa/efectos de los fármacos , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Quinolinas/farmacología , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo
7.
J Nanobiotechnology ; 22(1): 565, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272089

RESUMEN

Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.


Asunto(s)
Arachis , Germinación , Grafito , Tolerancia a la Sal , Plantones , Semillas , Arachis/metabolismo , Arachis/efectos de los fármacos , Arachis/fisiología , Arachis/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Fotosíntesis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Transcriptoma/efectos de los fármacos , Antioxidantes/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273197

RESUMEN

Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.


Asunto(s)
Flavonoides , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Melatonina , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/efectos de los fármacos , Melatonina/farmacología , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Flores/genética , Flores/metabolismo , Flores/efectos de los fármacos , Transcriptoma , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273221

RESUMEN

Aluminum (Al) toxicity and low phosphorus availability (LP) are the top two co-existing edaphic constraints limiting agriculture productivity in acid soils. Plants have evolved versatile mechanisms to cope with the two stresses alone or simultaneously. However, the specific and common molecular mechanisms, especially those involving flavonoids and carbohydrate metabolism, remain unclear. Laboratory studies were conducted on two wheat genotypes-Fielder (Al-tolerant and P-efficient) and Ardito (Al-sensitive and P-inefficient)-exposed to 50 µM Al and 2 µM Pi (LP) in hydroponic solutions. After 4 days of stress, wheat roots were analyzed using transcriptomics and targeted metabolomics techniques. In Fielder, a total of 2296 differentially expressed genes (DEGs) were identified under Al stress, with 1535 upregulated and 761 downregulated, and 3029 DEGs were identified under LP stress, with 1591 upregulated and 1438 downregulated. Similarly, 4404 DEGs were identified in Ardito under Al stress, with 3191 upregulated and 1213 downregulated, and 1430 DEGs were identified under LP stress, with 1176 upregulated and 254 downregulated. GO annotation analysis results showed that 4079 DEGs were annotated to the metabolic processes term. These DEGs were significantly enriched in the phenylpropanoid, flavonoid, flavone and flavonol biosynthesis, and carbohydrate metabolism pathways by performing the KEGG enrichment analysis. The targeted metabolome analysis detected 19 flavonoids and 15 carbohydrate components in Fielder and Ardito under Al and LP stresses. In Fielder, more responsive genes and metabolites were involved in flavonoid metabolism under LP than Al stress, whereas the opposite trend was observed in Ardito. In the carbohydrate metabolism pathway, the gene and metabolite expression levels were higher in Fielder than in Ardito. The combined transcriptome and metabolome analysis revealed differences in flavonoid- and carbohydrate-related genes and metabolites between Fielder and Ardito under Al and LP stresses, which may contribute to Fielder's higher resistance to Al and LP. The results of this study lay a foundation for pyramiding genes and breeding multi-resistant varieties.


Asunto(s)
Aluminio , Regulación de la Expresión Génica de las Plantas , Metabolómica , Fósforo , Transcriptoma , Triticum , Triticum/metabolismo , Triticum/genética , Aluminio/toxicidad , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica/métodos , Estrés Fisiológico/genética , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Metaboloma
10.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273315

RESUMEN

ADP-ribosylation (ADPRylation) is a mechanism which post-translationally modifies proteins in eukaryotes in order to regulate a broad range of biological processes including programmed cell death, cell signaling, DNA repair, and responses to biotic and abiotic stresses. Poly(ADP-ribosyl) polymerases (PARPs) play a key role in the process of ADPRylation, which modifies target proteins by attaching ADP-ribose molecules. Here, we investigated whether and how PARP1 and PARylation modulate responses of Nicotiana benthamiana plants to methyl viologen (MV)-induced oxidative stress. It was found that the burst of reactive oxygen species (ROS), cell death, and loss of tissue viability invoked by MV in N. benthamiana leaves was significantly delayed by both the RNA silencing of the PARP1 gene and by applying the pharmacological inhibitor 3-aminobenzamide (3AB) to inhibit PARylation activity. This in turn reduced the accumulation of PARylated proteins and significantly increased the gene expression of major ROS scavenging enzymes including SOD (NbMnSOD; mitochondrial manganese SOD), CAT (NbCAT2), GR (NbGR), and APX (NbAPX5), and inhibited cell death. This mechanism may be part of a broader network that regulates plant sensitivity to oxidative stress through various genetically programmed pathways.


Asunto(s)
Nicotiana , Estrés Oxidativo , Paraquat , Especies Reactivas de Oxígeno , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Paraquat/farmacología , Nicotiana/genética , Nicotiana/metabolismo , Poli ADP Ribosilación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273343

RESUMEN

Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 µM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Esteroides Heterocíclicos , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Esteroides Heterocíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Perfilación de la Expresión Génica/métodos , Especies Reactivas de Oxígeno/metabolismo , Frío , Estrés Fisiológico , Respuesta al Choque por Frío , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
12.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273425

RESUMEN

Sulfur dioxide (SO2) is the most effective preservative for table grapes as it reduces the respiratory intensity of berries and inhibits mold growth. However, excessive SO2 causes berry abscission during storage, resulting in an economic loss postharvest. In this study, grapes were exogenously treated with SO2, SO2 + 1.5% chitosan, SO2 + 1.5% eugenol, and SO2 + eugenol-loaded chitosan nanoparticles (SN). In comparison to SO2 treatment, SN treatment reduced the berries' abscission rate by 74% while maintaining the quality of the berries. Among the treatments, SN treatment most effectively inhibited berry abscission and maintained berry quality. RNA-sequencing (RNA-seq) revealed that SN treatment promoted the expression of genes related to cell wall metabolism. Among these genes, VlCOMT was detected as the central gene, playing a key role in mediating the effects of SN. Dual luciferase and yeast one-hybrid (Y1H) assays demonstrated that VlbZIP14 directly activated VlCOMT by binding to the G-box motif in the latter's promoter, which then participated in lignin synthesis. Our results provide key insights into the molecular mechanisms underlying the SN-mediated inhibition of berry abscission and could be used to improve the commercial value of SO2-treated postharvest table grapes.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Factores de Transcripción , Vitis , Vitis/efectos de los fármacos , Vitis/genética , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Lignina/biosíntesis , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Quitosano/farmacología , Dióxido de Azufre/farmacología , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Regiones Promotoras Genéticas
13.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273513

RESUMEN

The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3-) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland's solution containing 5 mM NO3- (check; CK), 0.1 mM NO3- (low NO3-; LN), or 0.1 mM NO3- plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3- starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Nitratos , Raíces de Plantas , Transducción de Señal , Triticum , Triticum/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Nitratos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Organogénesis de las Plantas/genética , Perfilación de la Expresión Génica
14.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273704

RESUMEN

Rapeseed is an important oil crop in the world. Wood vinegar could increase the yield and abiotic resistance of rapeseed. However, little is known about the underlying mechanisms of wood vinegar or its valid chemical components on rapeseed. In the present study, wood vinegar and butyrolactone (γ-Butyrolactone, one of the main components of wood vinegar) were applied to rapeseed at the seedling stage, and the molecular mechanisms of wood vinegar that affect rapeseed were studied by combining transcriptome and metabolomic analyses. The results show that applying wood vinegar and butyrolactone increases the biomass of rapeseed by increasing the leaf area and the number of pods per plant, and enhances the tolerance of rapeseed under low temperature by reducing membrane lipid oxidation and improving the content of chlorophyll, proline, soluble sugar, and antioxidant enzymes. Compared to the control, 681 and 700 differentially expressed genes were in the transcriptional group treated with wood vinegar and butyrolactone, respectively, and 76 and 90 differentially expressed metabolites were in the metabolic group. The combination of transcriptome and metabolomic analyses revealed the key gene-metabolic networks related to various pathways. Our research shows that after wood vinegar and butyrolactone treatment, the amino acid biosynthesis pathway of rapeseed may be involved in mediating the increase in rapeseed biomass, the proline metabolism pathway of wood vinegar treatment may be involved in mediating rapeseed's resistance to low-temperature stress, and the sphingolipid metabolism pathway of butyrolactone treatment may be involved in mediating rapeseed's resistance to low-temperature stress. It is suggested that the use of wood vinegar or butyrolactone are new approaches to increasing rapeseed yield and low-temperature resistance.


Asunto(s)
4-Butirolactona , Regulación de la Expresión Génica de las Plantas , Metabolómica , Transcriptoma , Metabolómica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácido Acético , Frío , Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de los fármacos , Brassica napus/genética , Brassica napus/metabolismo , Respuesta al Choque por Frío/efectos de los fármacos , Perfilación de la Expresión Génica , Madera/química , Madera/efectos de los fármacos , Metaboloma/efectos de los fármacos , Brassica rapa/crecimiento & desarrollo , Brassica rapa/efectos de los fármacos , Brassica rapa/metabolismo , Brassica rapa/genética
15.
Plant Cell Rep ; 43(9): 226, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227493

RESUMEN

KEY MESSAGE: Cd induces photosynthetic inhibition and oxidative stress damage in H. citrina, which mobilizes the antioxidant system and regulates the expression of corresponding genes to adapt to Cd and Pb stress. Cd and Pb are heavy metals that cause severe pollution and are highly hazardous to organisms. Physiological measurements and transcriptomic analysis were combined to investigate the effect of 5 mM Cd or Pb on Hemerocallis citrina Baroni. Cd significantly inhibited H. citrina growth, while Pb had a minimal impact. Both Cd and Pb suppressed the expression levels of key chlorophyll synthesis genes, resulting in decreased chlorophyll content. At the same time, Cd accelerated chlorophyll degradation. It reduced the maximum photochemical efficiency of photosystem (PS) II, damaging the oxygen-evolving complex and leading to thylakoid dissociation. In contrast, no such phenomena were observed under Pb stress. Cd also inhibited the Calvin cycle by down-regulating the expression of Rubisco and SBPase genes, ultimately disrupting the photosynthetic process. Cd impacted the light reaction processes by damaging the antenna proteins, PS II and PS I activities, and electron transfer rate, while the impact of Pb was weaker. Cd significantly increased reactive oxygen species and malondialdehyde accumulation, and inhibited the activities of antioxidant enzymes and the expression levels of the corresponding genes. However, H. citrina adapted to Pb stress by the recruitment of antioxidant enzymes and the up-regulation of their corresponding genes. In summary, Cd and Pb inhibited chlorophyll synthesis and hindered the light capture and electron transfer processes, with Cd exerting great toxicity than Pb. These results elucidate the physiological and molecular mechanisms by which H. citrina responds to Cd and Pb stress and provide a solid basis for the potential utilization of H. citrina in the greening of heavy metal-polluted lands.


Asunto(s)
Antioxidantes , Cadmio , Clorofila , Regulación de la Expresión Génica de las Plantas , Plomo , Fotosíntesis , Fotosíntesis/efectos de los fármacos , Cadmio/toxicidad , Plomo/toxicidad , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Clorofila/metabolismo , Perfilación de la Expresión Génica , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Transcriptoma/efectos de los fármacos , Amaranthaceae/efectos de los fármacos , Amaranthaceae/genética , Amaranthaceae/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Malondialdehído/metabolismo
16.
Physiol Plant ; 176(5): e14513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262029

RESUMEN

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Asunto(s)
Defensinas , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Withania , Withania/genética , Withania/fisiología , Withania/metabolismo , Withania/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/efectos de los fármacos , Nicotiana/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Defensinas/genética , Defensinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Alternaria/fisiología , Sequías , Plantones/genética , Plantones/fisiología , Plantones/efectos de los fármacos , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Peróxido de Hidrógeno/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología
17.
Planta ; 260(4): 91, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259289

RESUMEN

MAIN CONCLUSION: Lysine plays an essential role in the growth differences between male and female S. linearistipularis plants under salt stress. Furthermore, SlDHDPS is identified as a vital gene contributing to the differences in saline-alkali tolerance between male and female plants of S. linearistipularis. Soil salinization is a significant problem that severely restricts agricultural production worldwide. High salinity and low nutrient concentrations consequently prevent the growth of most plant species. Salix linearistipularis is the only woody plant (shrub) naturally distributed in the saline-alkali lands of the Songnen Plain in Northeast China, and it is one of the few plants capable of thriving in soils with extremely high salt and alkaline pH (>9.0) levels. However, insufficient attention has been given to the interplay between salt and nitrogen in the growth and development of S. linearistipularis. Here, the male and female plants of S. linearistipularis were subjected to salt stress with nitrogen-starvation or nitrogen-supplement treatments, and it was found that nitrogen significantly affects the difference in salt tolerance between male and female plants, with nitrogen-starvation significantly enhancing the salt stress tolerance of female plants compared to male plants. Transcriptional analyses showed 66 differentially expressed nitrogen-responsive genes in female and male roots, with most of them showing sexual differences in expression patterns under salinity stress. RNA-seq and RT-qPCR analysis demonstrated that six genes had an opposite salt-induced expression pattern in female and male roots. The expression of the 4-hydroxy-tetrahydrodipicolinate synthase encoding gene (SlDHDPS) in female roots was higher than that in male roots. Further treatment with exogenous lysine could significantly alleviate the inhibitory effect of salt stress on the growth of female and male plants. These results indicate that the SlDHDPS in the nitrogen metabolism pathway is involved in the resistance of S. linearistipularis to salt stress, which lays a foundation for further exploring the mechanism of nitrogen on salt tolerance of S. linearistipularis, and has a significant reference value for saline-alkali land management and sustainable agricultural development.


Asunto(s)
Perfilación de la Expresión Génica , Salix , Salix/genética , Salix/fisiología , Salix/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Salino/genética , Hidroliasas/genética , Hidroliasas/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , China
18.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273109

RESUMEN

Plants are an important source for the discovery of novel natural growth regulators. We used activity screening to demonstrate that treatment of Nipponbare seeds with 25 µg/mL isopimaric acid significantly increased the resulting shoot length, root length, and shoot weight of rice seedlings by 11.37 ± 5.05%, 12.96 ± 7.63%, and 27.98 ± 10.88% and that it has a higher activity than Gibberellin A3 (GA3) at the same concentration. A total of 213 inbred lines of different rice lineages were screened, and we found that isopimaric acid had different growth promotional activities on rice seedlings of different varieties. After induction with 25 µg/mL isopimaric acid, 15.02% of the rice varieties tested showed increased growth, while 15.96% of the varieties showed decreased growth; the growth of the remaining 69.02% did not show any significant change from the control. In the rice varieties showing an increase in growth, the shoot length and shoot weight significantly increased, accounting for 21.88% and 31.25%. The root length and weight significantly increased, accounting for 6.25% and 3.13%. Using genome-wide association studies (GWASs), linkage disequilibrium block, and gene haplotype significance analysis, we identified single nucleotide polymorphism (SNP) signals that were significantly associated with the length and weight of shoots on chromosomes 2 and 8, respectively. After that, we obtained 17 candidate genes related to the length of shoots and 4 candidate genes related to the weight of shoots. Finally, from the gene annotation data and gene tissue-specific expression; two genes related to this isopimaric acid regulation phenotype were identified as OsASC1 (LOC_Os02g37080) on chromosome 2 and OsBUD13 (LOC_Os08g08080) on chromosome 8. Subcellular localization analysis indicated that OsASC1 was expressed in the plasma membrane and the nuclear membrane, while OsBUD13 was expressed in the nucleus. Further RT-qPCR analysis showed that the relative expression levels of the resistance gene OsASC1 and the antibody protein gene OsBUD13 decreased significantly following treatment with 25 µg/mL isopimaric acid. These results suggest that isopimaric acid may inhibit defense pathways in order to promote the growth of rice seedlings.


Asunto(s)
Abietanos , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de los fármacos , Sitios de Carácter Cuantitativo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
19.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273130

RESUMEN

Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.


Asunto(s)
Aluminio , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum , ARN Largo no Codificante , Estrés Fisiológico , Transcriptoma , ARN Largo no Codificante/genética , Aluminio/toxicidad , Hordeum/genética , Hordeum/efectos de los fármacos , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Genotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273148

RESUMEN

Brassica rapa L. is an important overwintering oilseed crop in Northwest China. Histone acetyltransferases (HATs) play an important role in epigenetic regulation, as well as the regulation of plant growth, development, and responses to abiotic stresses. To clarify the role of histone acetylation in the low-temperature response of B. rapa L., we identified 29 HAT genes in B. rapa L. using bioinformatics tools. We also conducted a comprehensive analysis of the physicochemical properties, gene structure, chromosomal localization, conserved structural domains and motifs, cis-acting regulatory elements, and evolutionary relationships of these genes. Using transcriptome data, we analyzed the expression patterns of BrHAT family members and predicted interactions between proteins; the results indicated that BrHATs play an important role in the low-temperature response of B. rapa L. HAT inhibitor (curcumin; CUR) and histone deacetylase inhibitor (Trichostatin A; TSA) were applied to four B. rapa L. varieties varying in cold resistance under the same low-temperature conditions, and changes in the physiological indexes of these four varieties were analyzed. The inhibitor treatment attenuated the effect of low temperature on seed germination, and curcumin treatment was most effective, indicating that the germination period was primarily regulated by histone acetylase. Both inhibitor treatments increased the activity of protective enzymes and the content of osmoregulatory substances in plants, suggesting that histone acetylation and deacetylation play a significant role in the response of B. rapa L. to low-temperature stress. The qRT-PCR analyses showed that the expression patterns of BrHATs were altered under different inhibitor treatments and low-temperature stress; meanwhile, we found three significantly differentially expressed genes. In sum, the process of histone acetylation is involved in the cold response and the BrHATs gene plays a role in the cold stress response.


Asunto(s)
Brassica rapa , Frío , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas , Inhibidores de Histona Desacetilasas , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Brassica rapa/genética , Brassica rapa/efectos de los fármacos , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Germinación/efectos de los fármacos , Filogenia , Acetilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA