Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.663.155
Filtrar
1.
Methods Mol Biol ; 2848: 151-167, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240522

RESUMEN

High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.


Asunto(s)
Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Retina , Enfermedades de la Retina , Tomografía de Coherencia Óptica , Animales , Tomografía de Coherencia Óptica/métodos , Enfermedades de la Retina/diagnóstico por imagen , Enfermedades de la Retina/patología , Enfermedades de la Retina/diagnóstico , Retina/diagnóstico por imagen , Retina/patología , Angiografía con Fluoresceína/métodos , Ratones , Ratas , Roedores , Imagen Óptica/métodos , Humanos , Fondo de Ojo
2.
Biomaterials ; 312: 122741, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121727

RESUMEN

Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.


Asunto(s)
Fascia Lata , Antígenos HLA , Ingeniería de Tejidos , Humanos , Animales , Ingeniería de Tejidos/métodos , Antígenos HLA/inmunología , Ratas , Andamios del Tejido/química , Materiales Biocompatibles/química , Masculino , Matriz Extracelular Descelularizada/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo
3.
Biomaterials ; 312: 122749, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121725

RESUMEN

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Barrera Hematoencefálica , Azul de Metileno , Nanomedicina , Enfermedades Neuroinflamatorias , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Apoptosis/efectos de los fármacos , Células PC12 , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas , Ratones , Nanomedicina/métodos , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL
4.
Biomaterials ; 313: 122767, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39216327

RESUMEN

Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation. We pursue intravascular drug delivery strategies that target the underlying cause of restenosis - intimal hyperplasia resulting from stress-induced vascular smooth muscle cell switching from the healthy contractile into a pathological synthetic phenotype. We have established MAPKAP kinase 2 (MK2) as a driver of this phenotype switch and seek to establish convective and contact transfer (coated balloon) methods for MK2 inhibitory peptide delivery to sites of angioplasty. Using a flow loop bioreactor, we showed MK2 inhibition in ex vivo arteries suppresses smooth muscle cell phenotype switching while preserving vessel contractility. A rat carotid artery balloon injury model demonstrated inhibition of intimal hyperplasia following MK2i coated balloon treatment in vivo. These studies establish both convective and drug coated balloon strategies as promising approaches for intravascular delivery of MK2 inhibitory formulations to improve efficacy of balloon angioplasty.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Ratas Sprague-Dawley , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Péptidos/química , Péptidos/farmacología , Ratas , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/citología , Angioplastia de Balón/métodos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Sistemas de Liberación de Medicamentos , Hiperplasia/prevención & control , Angioplastia , Neointima/prevención & control , Neointima/patología
5.
J Ethnopharmacol ; 336: 118718, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179056

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tackling phlegm and improving blood circulation is vital in the treatment of ischemic stroke (IS), culminating in the development of Zhongfeng Decoction (ZFD), a method grounded in this approach and serving as an effective therapy for IS. Nonetheless, the defensive mechanism of the ZFD in preventing cerebral ischemia-reperfusion damage remains ambiguous. AIM OF THE STUDY: Determine the active ingredients in ZFD that have neuroprotective effects, and identify its mechanism of action against IS. MATERIALS AND METHODS: A cerebral ischemia model in rats was developed, utilizing TTC, Nissl staining, and an oxidative stress kit to evaluate the neuroprotective impact of ZFD on this rat model. Following this, an amalgamation of LC-MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of ZFD in treating IS. Finally, key targets and signaling pathways were detected using qRT-PCR, ELISA, Western blotting, electron microscopy, and other methods. RESULTS: Through LC-MS and network analysis, 15 active ingredients and 6 hub targets were identified from ZFD. Analysis of pathway enrichment revealed that ZFD predominantly engages in the AGE-RAGE signaling route. Kaempferol, quercetin, luteolin, baicalein, and nobiletin in ZFD are the main active ingredients for treating IS. In vivo validation showed that ZFD can improve nerve damage in cerebral ischemic rats, reduce the mRNA expression of IL6, SERPINE1, CCL2, and TGFB1 related to inflammation. Furthermore, we also confirmed that ZFD can inhibit the protein expression of AGEs, RAGE, p-IKBα/IKBα, p-NF-κB p65/NF-κB p65, reduce autophagy levels, and thus decrease neuronal apoptosis. CONCLUSIONS: The mechanism of action of ZFD in treating IS primarily includes inflammation suppression, oxidative stress response alleviation, post-stroke cell autophagy and apoptosis regulation, and potential mediation of the AGE-RAGE signaling pathway. This study elucidates how ZFD functions in treating IS, establishing a theoretical basis for its clinical application.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Autofagia/efectos de los fármacos , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo
6.
J Ethnopharmacol ; 336: 118759, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY: The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS: A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS: Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION: CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hipercolesterolemia , Metabolómica , Farmacología en Red , Ratas Sprague-Dawley , Salvia miltiorrhiza , Animales , Hipercolesterolemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Cromatografía Líquida de Alta Presión , Salvia miltiorrhiza/química , Ratas , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Canfanos , Panax notoginseng
7.
Biomaterials ; 313: 122756, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39182327

RESUMEN

Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 µm (Ta 250), 450 µm (Ta 450), 650 µm (Ta 650), and 850 µm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 µm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.


Asunto(s)
Regeneración Ósea , Tantalio , Andamios del Tejido , Tantalio/química , Regeneración Ósea/efectos de los fármacos , Porosidad , Animales , Andamios del Tejido/química , Ratas , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Humanos , Masculino , Prueba de Estudio Conceptual , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Femenino
8.
Biomaterials ; 313: 122764, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190941

RESUMEN

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Asunto(s)
Hidrógeno , Degeneración del Disco Intervertebral , Mitocondrias , Estrés Oxidativo , Hidrógeno/química , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración/efectos de los fármacos , Disco Intervertebral/efectos de los fármacos , Humanos , Mitofagia/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratas
9.
Biomaterials ; 313: 122803, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39232334

RESUMEN

Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.


Asunto(s)
Terapia por Ultrasonido , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Terapia por Ultrasonido/métodos , Ratas Sprague-Dawley , Ratas , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/química , Ratones , Estimulación Eléctrica , Masculino , Infecciones Estafilocócicas/terapia , Poliésteres/química , Especies Reactivas de Oxígeno/metabolismo , Terapia por Estimulación Eléctrica/métodos , Neovascularización Fisiológica/efectos de los fármacos
10.
J Ethnopharmacol ; 336: 118717, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181284

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thrombosis is a common cause of morbidity and mortality worldwide. Lagopsis supina (Stephan ex Willd.) Ikonn.-Gal. ex Knorring is an ancient Chinese herbal medicine used for treating thrombotic diseases. Nevertheless, the antithrombotic mechanisms and effective constituents of this plant have not been clarified. AIM OF THE STUDY: This work aimed to elucidate the pharmacodynamics and mechanism of L. supina against thrombosis. MATERIALS AND METHODS: Systematic network pharmacology was used to explore candidate effective constituents and hub targets of L. supina against thrombosis. Subsequently, the binding affinities of major constituents with core targets were verified by molecular docking analysis. Afterward, the therapeutic effect and mechanism were evaluated in an arteriovenous bypass thrombosis rat model. In addition, the serum metabolomics analysis was conducted using ultra-high performance liquid chromatography coupled with Q-Exactive mass spectrometry. RESULTS: A total of 124 intersected targets of L. supina against thrombosis were predicted. Among them, 24 hub targets were obtained and their mainly associated with inflammation, angiogenesis, and thrombosis approaches. Furthermore, 9 candidate effective constituents, including (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3ß-ol, aurantiamide, (22E,24R)-5α,8α-epidioxyergosta-6,9 (11),22-trien-3ß-ol, lagopsinA, lagopsin C, 15-epi-lagopsin C, lagopsin D, 15-epi-lagopsin D, and lagopsin G in L. supina and 6 potential core targets (TLR-4, TNF-α, HIF-1α, VEGF-A, VEGFR-2, and CLEC1B) were acquired. Then, these 9 constituents demonstrated strong binding affinities with the 6 targets, with their lowest binding energies were all less than -5.0 kcal/mol. The antithrombotic effect and potential mechanisms of L. supina were verified, showing a positively associated with the inhibition of inflammation (TNF-α, IL-1ß, IL-6, IL-8, and IL-10) and coagulation cascade (TT, APTT, PT, FIB, AT-III), promotion of angiogenesis (VEGF), suppression of platelet activation (TXB2, 6-keto-PGF1α, and TXB2/6-keto-PGF1α), and prevention of fibrinolysis (t-PA, u-PA, PAI-1, PAI-1/t-PA, PAI-1/u-PA, and PLG). Finally, 14 endogenous differential metabolites from serum samples of rats were intervened by L. supina based on untargeted metabolomics analysis, which were closely related to amino acid metabolism, inflammatory and angiogenic pathways. CONCLUSION: Our integrated strategy based on network pharmacology, molecular docking, metabolomics, and in vivo experiments revealed for the first time that L. supina exerts a significant antithrombotic effect through the inhibition of inflammation and coagulation cascade, promotion of angiogenesis, and suppression of platelet activation. This paper provides novel insight into the potential of L. supina as a candidate agent to treat thrombosis.


Asunto(s)
Fibrinolíticos , Metabolómica , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratas Sprague-Dawley , Trombosis , Animales , Fibrinolíticos/farmacología , Fibrinolíticos/química , Fibrinolíticos/aislamiento & purificación , Ratas , Masculino , Trombosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
11.
J Ethnopharmacol ; 336: 118723, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181285

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY: A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS: The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS: APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS: APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glicopéptidos , Insuficiencia Cardíaca , Panax , Pez Cebra , Animales , Panax/química , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas , Línea Celular , Glicopéptidos/farmacología , Glicopéptidos/química , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cardiotónicos/farmacología , Cardiotónicos/química , Cardiotónicos/aislamiento & purificación , Cardiotónicos/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos
12.
J Ethnopharmacol ; 336: 118705, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181288

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Palm buds are a natural green resource of the forest, which are not only rich in nutrients but contain a large number of phenolic acids and flavonoids, among other components. It has a variety of biological activities such as antioxidant and uterine smooth muscle stimulation. AIM OF THE STUDY: To evaluate the safety of palm buds for use as a nutraceutical product and food by evaluating the toxicity, subacute toxicity and genotoxicity of the young palm buds. Also studied for its immune-enhancing activity. MATERIALS AND METHODS: Acute toxicity tests were performed in mice using the maximum tolerance method, and the manifestations of toxicity and deaths were recorded after administration of 10,000 mg/mL for 14 consecutive d (days) of observations. To assess subacute toxicity, mice were treated with palm buds (750, 1500, or 3000 mg/mL) daily for 28 days. The teratogenicity of palm buds was assessed by the Ames test, the mouse bone marrow cell micronucleus test, and the mouse spermatozoa malformation test. In addition, we evaluated the immune-enhancing ability of palm buds by the mouse carbon profile test, delayed-type metamorphosis reaction, and serum hemolysin assay. RESULTS: In the acute toxicity study, the Median Lethal Dose (LD50) was greater than 10,000 mg/kg bw in both male and female rats. There were also no deaths or serious toxicities in the subacute study. The no-observed-adverse-effect level (NOAEL) was 3000 mg/kg bw. However, the mice's food intake decreased after one week. The medium and high dose groups had a reducing effect on body weight in mice of both sexes. In addition, the changes in organ coefficients of the liver, kidney and stomach in male mice were significantly higher in the high-dose group (3.23 ± 0.35, 0.75 ± 0.05, 0.57 ± 0.05 g) than in the control group (2.94 ± 0.18, 0.58 ± 0.05, 0.50 ± 0.02 g). Hematological analyses showed that all the indices of the rats in each palm sprout dose group were within the normal range. The results of blood biochemical indicators showed that there was a significant reduction in TP in the blood of male mice in the high-dose group (44.6 ± 7.8 g/L) compared to the control group (58.3 ± 15.1 g/L). In histopathological analysis, none of the significant histopathological changes were observed. The results of the immunological experiment in mice showed that the liver coefficient and thymus coefficient of the high-dose group (8400 mg/kg) were significantly lower than the control group. There was no remarkable difference in auricle swelling between each dose palm bud group (1400, 2800, or 8400 mg/kg) and the control group. The anti-volume number of the high-dose group was significantly increased. CONCLUSION: Palm buds have non-toxic effects in vivo and have little effect on non-specific and cellular immunity in the test mice within the dose range of this experiment. The immunoenhancement in mice is mainly achieved through humoral immunity. In conclusion, our results suggest that palm buds are safe for use as healthcare products and food.


Asunto(s)
Arecaceae , Pruebas de Toxicidad Aguda , Animales , Femenino , Masculino , Arecaceae/química , Ratones , Extractos Vegetales/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Factores Inmunológicos/toxicidad , Ratas , Pruebas de Toxicidad Subaguda , Relación Dosis-Respuesta a Droga , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Proteínas Hemolisinas/toxicidad , Dosificación Letal Mediana
13.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
14.
J Ethnopharmacol ; 336: 118729, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182699

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The popularity of herbal medicine is expanding globally due to the common belief that herbal products are natural and nontoxic. Thymelaea hirsuta leaves are traditionally used for the treatment of recurrent abortion in humans and animals. However, a lack of safety evaluation of the plant, particularly in pregnant women, raises serious concerns regarding its potential embryotoxic effects. AIM OF THE STUDY: Therefore, the present study investigated the safety of Thymelaea hirsuta leaves aqueous extract (THLE) during pregnancy and lactation following maternal rat treatment. MATERIALS AND METHODS: THLE phytochemical compounds were identified using high-performance liquid chromatography (HPLC). THLE was orally administered to pregnant rats and lactating dams at dosages of 0, 250, 500, and 1000 mg/kg/day. At the end of the study, dam s' and pups' body weights, serum biochemical and hematological indices, and histopathological changes were investigated. For the fetal observation and histopathological changes were also evaluated. RESULTS: Our findings revealed that THLE is rich in different phenolic and flavonoid compounds. However, biochemical and hormonal parameters such as ALT, AST, and prolactin were significantly increased in dams treated with a higher dosage of THLE when compared to the control dams (P ≤ 0.05). Additionally, external, visceral and skeletal examinations of fetuses revealed a marked increase of malformation rates in treated fetuses. CONCLUSIONS: The results revealed that higher oral dosing of THLE during pregnancy could affect embryonic development in rats, while lower doses are safe and can be used during pregnancy and lactation to attain its beneficial effects.


Asunto(s)
Extractos Vegetales , Hojas de la Planta , Ratas Wistar , Thymelaeaceae , Animales , Extractos Vegetales/toxicidad , Extractos Vegetales/farmacología , Femenino , Embarazo , Ratas , Thymelaeaceae/química , Lactancia , Reproducción/efectos de los fármacos , Masculino , Relación Dosis-Respuesta a Droga
15.
J Ethnopharmacol ; 336: 118727, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182700

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (O. sinensis) is a genus of Ascomycete fungus that is endemic to the alpine meadows of the Tibetan Plateau and adjoining Himalayas. It has been used traditionally as a tonic to improve respiratory health in ancient China as well as to promote vitality and longevity. Bioactive components found in O. sinensis such as adenosine, cordycepin, 3-deoxyadenosine, L-arginine and polysaccharides have gained increasing interest in recent years due to their antioxidative and other properties, which include anti-asthmatic, antiviral, immunomodulation and improvement of general health. AIM OF THE STUDY: This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans. MATERIALS AND METHODS: A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay. RESULTS: Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%. CONCLUSIONS: These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Músculo Liso , Ratas Sprague-Dawley , Animales , Masculino , Cuerpos Fructíferos de los Hongos/química , Músculo Liso/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Ratas , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Longevidad/efectos de los fármacos , Hypocreales
16.
J Ethnopharmacol ; 336: 118736, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186991

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY: This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS: Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS: ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1ß and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION: ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Metabolómica , Farmacología en Red , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Masculino , Ratas , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Citocinas/sangre , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos
17.
J Ethnopharmacol ; 336: 118728, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186990

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese traditional medicine frankincense, which can promote blood circulation, is often used to treat skin lesions, including frostbite. AIM OF THE STUDY: To explore the properties of frankincense oil extract (FOE) and its active ingredients and their effect on frostbite wound recovery as an approach to understand the mechanism associated with microcirculation-improvement therapy. MATERIALS AND METHODS: The microcirculation-improving effects of FOE and its active ingredients were evaluated using liquid nitrogen-induced frostbite animal models. The rewarming capacity of FOE on the skin was determined through infrared detection, and frostbite wound healing was evaluated following haematoxylin and eosin (H&E) staining and fibre analysis. Moreover, related factors were examined to determine the anti-apoptotic, anti-inflammatory, and microcirculatory properties of FOE and its active ingredients on affected tissue in the context of frostbite. RESULTS: FOE and its active ingredients rapidly rewarmed wound tissue after frostbite by increasing the temperature. Moreover, these treatments improved wound healing and restored skin structure through collagen and elastin fibre remodelling. In addition, they exerted anti-apoptotic effects by decreasing the number of apoptotic cells, reducing caspase-3 expression, and eliciting anti-inflammatory effects by decreasing COX-2 and ß-catenin expression. They also improved microcirculatory disorders by decreasing HIF-1α expression and increasing CD31 expression. CONCLUSIONS: FOE and its active components can effectively treat frostbite by enhancing microcirculation, inhibiting the infiltration of inflammatory cells, decreasing cell apoptosis, and exerting antinociceptive effects. These findings highlight FOE as a new treatment option for frostbite, providing patients with an effective therapeutic strategy.


Asunto(s)
Congelación de Extremidades , Microcirculación , Cicatrización de Heridas , Congelación de Extremidades/tratamiento farmacológico , Animales , Microcirculación/efectos de los fármacos , Masculino , Cicatrización de Heridas/efectos de los fármacos , Piel/efectos de los fármacos , Piel/irrigación sanguínea , Piel/patología , Apoptosis/efectos de los fármacos , Ratas , Modelos Animales de Enfermedad , Ratones , Administración Tópica , Ratas Sprague-Dawley , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Extractos Vegetales/farmacología
18.
J Ethnopharmacol ; 336: 118740, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197800

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY: To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS: Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS: UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS: Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.


Asunto(s)
Cardiomiopatías , Medicamentos Herbarios Chinos , Sepsis , Animales , Medicamentos Herbarios Chinos/farmacología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Ratones , Masculino , Línea Celular , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Lipopolisacáridos/toxicidad , Farmacología en Red , Ratas , Modelos Animales de Enfermedad , Espectrometría de Masas en Tándem
19.
J Ethnopharmacol ; 336: 118742, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Ayuno , Hipoglucemiantes , Extractos Vegetales , Periodo Posprandial , Animales , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Masculino , Irán , Ratas , Medicina Persa , Ratas Wistar , Hiperglucemia/tratamiento farmacológico , Plantas Medicinales/química , Estreptozocina , Juniperus/química
20.
Food Chem ; 462: 140953, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216374

RESUMEN

The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Digestión , Glútenes , Péptidos , Peptidil-Dipeptidasa A , Ratas Endogámicas SHR , Zea mays , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antihipertensivos/química , Antihipertensivos/farmacología , Animales , Glútenes/química , Glútenes/metabolismo , Humanos , Zea mays/química , Zea mays/metabolismo , Ratas , Células CACO-2 , Péptidos/química , Péptidos/farmacología , Masculino , Digestión/efectos de los fármacos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Presión Sanguínea/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Tracto Gastrointestinal/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA