Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.158
Filtrar
1.
Food Chem ; 462: 140956, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197243

RESUMEN

The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.


Asunto(s)
Antioxidantes , Morinda , Fenoles , Extractos Vegetales , Morinda/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Flavonoides/química , Flavonoides/aislamiento & purificación , Corteza de la Planta/química , Fraccionamiento Químico/métodos , Tallos de la Planta/química , Raíces de Plantas/química
2.
Sci Rep ; 14(1): 20661, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237603

RESUMEN

Considering the toxicological effects of some heavy metals (HMs) in which directly related to mortality and carcinogenicity in the population by their entrance from plants through livestock grazing, and medical skin cream, the rehabilitation of contaminated sites through phytoremediation by native plants might be quite challenging. Diplotaenia damavandica Mozaff. ex-Hedge & Lamond, is used as medical skin creams due to the existence of specific ingredients, which can be effective in treating skin disease. In the present study, the plant and associated soil sampling were performed around the boundary of D. damavandica. The concentration was measured using the Inductively coupled plasma mass spectrometry (ICP-MS). The results revealed the effect of existing endemic plants on reducing the average concentration of lead and zinc in soil by 40 and 60%, respectively, due to phytoremediation. EDX confirmed the presence of Pb and Zn in root and shoot tissues. Based on the results of this study, D. damavandica is an endemic perennial herbaceous plant with 60% biomass and prosperous root systems, which can grow in low contaminated areas of Pb in the southeast of Damavand Mt. Hence, the HMs pattern indicated less often in the aerial parts except for lead, which should be examined more carefully for skin cream uses.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/análisis , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Irán , Suelo/química , Plomo/toxicidad , Plomo/análisis , Plomo/metabolismo , Humanos , Zinc/análisis , Zinc/metabolismo , Zinc/toxicidad , Monitoreo del Ambiente/métodos , Raíces de Plantas/metabolismo , Raíces de Plantas/química
3.
Int J Nanomedicine ; 19: 9373-9393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286353

RESUMEN

Purpose: Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs. In this context, we recently identified hairy roots (HRs) of medicinal plants as a novel biotechnological platform to produce EVs for human health. Methods: Herein, we report the purification, omics profiling, and bioactivity of EVs isolated from HRs of the medicinal plants S. sclarea and S. dominica. EVs were isolated from conditioned media of HR cultures using differential ultracentrifugation (dUC) and size exclusion chromatography (SEC). The isolated EVs were characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The proteomic and metabolomic profiles of the EVs were determined using mass spectrometry. Uptake studies and bioactivity assays, including confocal microscopy, MTT, flow cytometry, ROS quantification, and untargeted metabolomics analyses, were conducted in SH-SY5Y cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to evaluate the therapeutic potential of EVs in an in vitro model of Parkinson's disease. Results: S. sclarea HRs released nanosized round-shaped EVs with a distinctive molecular signature. HR EVs from S. sclarea and S. dominica revealed conserved cargo of secondary metabolites, predominantly triterpenoids, which are known for their antioxidant properties. We showed that HR EVs are safe, enter the cells, and strongly inhibit apoptosis in a cellular model of Parkinson's disease. Cellular metabolomics revealed that EVs preserved metabolic homeostasis and mitigated cellular oxidative stress when co-administered with 6-OHDA. Mechanistically, HR EVs inhibited 6-OHDA autoxidation and substantially reduced the accumulation of its oxidative products, which are responsible for 6-OHDA-induced toxicity. Conclusion: Collectively, our findings provide compelling evidence that EVs isolated from the hairy roots of Salvia species are promising, non-mammalian alternative for the design of novel therapies targeting neurological disorders.


Asunto(s)
Vesículas Extracelulares , Fármacos Neuroprotectores , Enfermedad de Parkinson , Raíces de Plantas , Salvia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Raíces de Plantas/química , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Salvia/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteómica/métodos , Metabolómica/métodos , Oxidopamina/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
Nutrients ; 16(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275338

RESUMEN

Manihot esculenta (cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL). Cassava flour supplementation impact was explored on flour composition (starch, fiber, carotenoids, phenolic compounds), in vivo glycemic index, and bioactivity potential using macrophage cells. We assessed the impact of cassava flour supplementation on free radicals scavenging and cellular production of pro-inflammatory mediators. CFL showed higher levels of fiber, carotenoids, phenolic compounds, and lower glycemic index. Significantly higher bioactive properties (anti-inflammatory and antioxidant) were recorded, and inhibition of cytokines production has been demonstrated as a function of extract concentration. Overall, our results indicate that enrichment of cassava flour with leaves significantly enhances its nutrition-health and bioactive potential. This bioguided matrix recombination approach may be of interest to provide prophylactic and therapeutic dietary strategy to manage malnutrition and associated chronic non-communicable diseases characterized by low-grade inflammation and unbalanced redox status. It would also promote a more efficient use of available food resources.


Asunto(s)
Antioxidantes , Harina , Manihot , Extractos Vegetales , Hojas de la Planta , Manihot/química , Antioxidantes/farmacología , Antioxidantes/análisis , Hojas de la Planta/química , Harina/análisis , Extractos Vegetales/farmacología , Animales , Ratones , Fibras de la Dieta/análisis , Fibras de la Dieta/farmacología , Valor Nutritivo , Antiinflamatorios/farmacología , Índice Glucémico , Células RAW 264.7 , Raíces de Plantas/química , Carotenoides/farmacología , Carotenoides/análisis , Agentes Inmunomoduladores/farmacología , Fenoles/análisis , Fenoles/farmacología , Factores Inmunológicos/farmacología
5.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273376

RESUMEN

The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.


Asunto(s)
Frío , Inmunoglobulina G , Extractos Vegetales , Raíces de Plantas , Salvia miltiorrhiza , Animales , Salvia miltiorrhiza/química , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inmunoglobulina G/sangre , Raíces de Plantas/química , Masculino , Abietanos/farmacología , Terapia de Inmunosupresión/métodos , Tolerancia Inmunológica/efectos de los fármacos
6.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273546

RESUMEN

Pueraria lobata (Willd.) Ohwi is a traditional medicinal herb that has been extensively used in Chinese medicine for various therapeutic purposes. In this study, twelve chemical constituents were isolated from the roots of P. lobata, comprising three puerosides (compounds 1-3), six alkaloids (compounds 4-9), and three additional compounds (compounds 10-12). Notably, compound 1 (4R-pueroside B) was identified as a novel compound. The structures of all compounds were elucidated using a range of spectroscopic techniques, including CD spectroscopy for the first-time determination of the absolute configurations of pueroside B isomers (compounds 1 and 2). Enzyme inhibition assays revealed that, with the exception of compound 2, all isolated compounds exhibited varying degrees of α-glucosidase and α-amylase inhibitory activity. Remarkably, compound 12 demonstrated IC50 values of 23.25 µM for α-glucosidase inhibition and 27.05 µM for α-amylase inhibition, which are superior to those of the positive control, acarbose (27.05 µM and 36.68 µM, respectively). Additionally, compound 11 exhibited inhibitory activity against α-glucosidase and α-amylase comparable to the positive control, acarbose. Molecular docking studies indicated that compound 12 interacts with the active sites of the enzymes via hydrogen bonds, van der Waals forces, and hydrophobic interactions, which likely contribute to their inhibitory effects. These findings suggest that the chemical constituents of P. lobata could be potential natural sources of α-amylase and α-glucosidase inhibitors, with compound 12 being particularly promising for further investigation.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , Raíces de Plantas , Pueraria , alfa-Amilasas , alfa-Glucosidasas , Pueraria/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química , Raíces de Plantas/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Isomerismo
7.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274864

RESUMEN

The root of Salvia miltiorrhiza Bunge (SMB) has been widely used to treat cardiovascular diseases. However, the contents of secondary metabolites in the roots from different production areas are significantly different, and the impact of soil factors on this accumulation remains unclear. Therefore, this study aimed to elucidate the regularity of variation between the active components and soil factors through targeted metabolomics and chemical dosimetry. Soils were collected from five different cities (A, B, C, D, and E) and transplanted into the study area. The results showed that there were significant differences in the soil fertility characteristics and heavy metal pollution levels in different soils. Ten water- and twelve lipid-soluble metabolites were identified in SMBs grown in all soil types. SMBs from D cities exhibited the highest total tanshinone content (p < 0.05). The salvianolic acid B content in SMBs from E cities was the highest (p < 0.05). Interestingly, correlation analysis revealed a significant negative correlation between the accumulation of lipid-soluble and water-soluble metabolites. Double-matrix correlation analysis demonstrated that available potassium (AK) was significantly negatively correlated with salvianolic acid B (r = -0.80, p = 0.0004) and positively correlated with tanshinone IIA (r = 0.66, p = 0.008). Conversely, cadmium (Cd) and cuprum (Cu) were significantly positively and negatively correlated with salvianolic acid B (r = 0.96, p < 0.0001 and r = 0.72, p = 0.0024) and tanshinone IIA (r = 0.40, p = 0.14 and r = 0.73, p = 0.0018), respectively. Mantel's test indicated that AK (r > 0.52, p < 0.001), Cu (r > 0.60, p < 0.005), and Cd (r > 0.31, p < 0.05) were the primary drivers of the differences in the active components of SMBs. These findings provide a theoretical framework for modulating targeted metabolites of SMB through soil factors, with significant implications for the cultivation and quality control of medicinal plants.


Asunto(s)
Metabolómica , Salvia miltiorrhiza , Suelo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Metabolómica/métodos , Suelo/química , Cromatografía Líquida de Alta Presión/métodos , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Abietanos , Benzofuranos/análisis , Benzofuranos/metabolismo , Depsidos
8.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274900

RESUMEN

The effect of different methods of drying celery root enriched with beet juice by vacuum impregnation (VI) was studied. The process of convection drying, vacuum drying and freeze drying was carried out. Compared to dried indigenous celery, dry impregnated tissue was characterized by lower values of dry matter, L* and b* color parameters, as well as higher values of water activity, density and a* color parameter. In addition, VI reduced the drying time. Forty Volatile Organic Compounds (VOCs) were found in celery, while fifty-one VOCs were found in the profile of celery with beetroot juice. The innovative method of vacuum impregnation made it possible to produce a new type of product with changed properties and a variable VOCs profile. The best fit of the drying process kinetics was achieved by using the logistic model. Increasing the temperature during convection drying resulted in shorter drying time, increased values of dry matter, reduced the water activity value and altered VOCs.


Asunto(s)
Apium , Beta vulgaris , Desecación , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Beta vulgaris/química , Cinética , Desecación/métodos , Apium/química , Jugos de Frutas y Vegetales/análisis , Raíces de Plantas/química , Liofilización/métodos , Agua/química
9.
Molecules ; 29(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275001

RESUMEN

Ethanolic extracts of Baikal skullcap (Scutellaria baicalensis) root were obtained using various techniques, such as maceration, maceration with shaking, ultrasound-assisted extraction, reflux extraction, and Soxhlet extraction. The influence of the type and time of isolation technique on the extraction process was studied, and the quality of the obtained extracts was determined by spectrophotometric and chromatographic methods to find the optimal extraction conditions. Radical scavenging activity of the extracts was analyzed using DPPH assay, while total phenolic content (TPC) was analyzed by the method with the Folin-Ciocalteu reagent. Application of gas chromatography with mass selective detector (GC-MS) enabled the identification of some bioactive substances and a comparison of the composition of the particular extracts. The Baikal skullcap root extracts characterized by both the highest antioxidant activity and content of phenolic compounds were obtained in 2 h of reflux and Soxhlet extraction. The main biologically active compounds identified in extracts by the GC-MS method were wogonin and oroxylin A, known for their broad spectrum of biological effects, including antioxidant, anti-inflammatory, antiviral, anticancer, and others.


Asunto(s)
Antioxidantes , Etanol , Fenoles , Extractos Vegetales , Raíces de Plantas , Scutellaria baicalensis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Scutellaria baicalensis/química , Antioxidantes/química , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/química , Etanol/química , Cromatografía de Gases y Espectrometría de Masas , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/aislamiento & purificación , Flavanonas/química , Flavanonas/aislamiento & purificación , Flavanonas/análisis
10.
Anal Chim Acta ; 1327: 343126, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39266059

RESUMEN

BACKGROUND: Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS: Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE: Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.


Asunto(s)
Espectrometría de Masas , Raíces de Plantas , Raíces de Plantas/química , Espectrometría de Masas/métodos , Exudados de Plantas/química , Cromatografía Líquida de Alta Presión/métodos
11.
J Chromatogr A ; 1735: 465332, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39241405

RESUMEN

Platycodon grandiflorum roots (PGR), a widely recognized edible herbal medicine, are extensively used in traditional Chinese medicine for respiratory ailments. PGR are rich in bioactive compounds, particularly triterpenoid saponins, which possess significant pharmaceutical properties, including anti-inflammatory, antifungal, and antioxidant activities. Despite their recognized bioactivity, the purification and enrichment processes of triterpenoid saponins remain underexplored. This study aimed to optimize the extraction and purification of triterpenoid saponins from PGR to enhance resource utilization and minimize waste. Our method involved n-butanol extraction and macroporous adsorption resin, yielding four extracts with varying saponins contents. Qualitative analysis using LC-MS identified 8 triterpenoid saponins across the extracts. Further fragmentation analysis delineated characteristic ion patterns and cleavage pathways for these compounds. Quantitative analysis demonstrated that the separation and purification process effectively increased the triterpenoid saponins content, with the highest levels obtained through 30 % ethanol elution. Notably, the absence of Platycodin D in the 30 % ethanol eluate highlighted potential variations due to the origin, processing, and purification methods. These findings provide theoretical support for the development and utilization of triterpenoid saponins in PGR.


Asunto(s)
Raíces de Plantas , Platycodon , Saponinas , Triterpenos , Saponinas/química , Saponinas/aislamiento & purificación , Saponinas/análisis , Platycodon/química , Raíces de Plantas/química , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/análisis , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Cromatografía Liquida/métodos
12.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275064

RESUMEN

Accessing plant resources to extract compounds of interest can sometimes be challenging. To facilitate access and limit the environmental impact, innovative cultivation strategies can be developed. Forskolin is a molecule of high interest, mainly found in the roots of Coleus forskohlii. The aim of this study was to develop aeroponic cultivation methods to provide a local source of Coleus forskohlii and to study the impact of abiotic stress on forskolin and bioactive metabolite production. Three cultivation itineraries (LED lighting, biostimulant, and hydric stress) along with a control itinerary were established. The forskolin content in the plant roots was quantified using HPLC-ELSD, and the results showed that LED treatment proved to be the most promising, increasing root biomass and the total forskolin content recovered at the end of the cultivation period threefold (710.1 ± 21.3 mg vs. 229.9 ± 17.7 mg). Statistical analysis comparing the LED itinerary to the control itinerary identified stress-affected metabolites, showing that LEDs positively influence mainly the concentration of phenolic compounds in the roots and diterpenes in the aerial parts of Coleus forskohlii. Moreover, to better define the phytochemical composition of Coleus forskohlii cultivated in France using aeroponic cultivation, an untargeted metabolomic analysis was conducted using UHPLC-HRMS/MS analysis and molecular networks on both the root and aerial parts. This study demonstrates that aeroponic cultivation, especially with the application of an LED treatment, could be a very promising alternative for a local source of Coleus forskohlii leading to easy access to the roots and aerial parts rich in forskolin and other bioactive compounds.


Asunto(s)
Colforsina , Raíces de Plantas , Plectranthus , Colforsina/metabolismo , Plectranthus/química , Plectranthus/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Fitoquímicos/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Coleus/química , Coleus/metabolismo , Coleus/crecimiento & desarrollo
13.
Nutrients ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275130

RESUMEN

Amino acid (AA)-related inherited metabolic disorders (IMDs) and urea cycle disorders (UCDs) require strict dietary management including foods low in protein such as fruits, vegetables and starchy roots. Despite this recommendation, there are limited data on the AA content of many of these foods. The aim of this study is to describe an analysis of the protein and AA content of a range of fruits, vegetables and starchy roots, specifically focusing on amino acids (AAs) relevant to AA-related IMDs such as phenylalanine (Phe), methionine (Met), leucine (Leu), lysine (Lys) and tyrosine (Tyr). AA analysis was performed using high-performance liquid chromatography (HPLC) on 165 food samples. Protein analysis was also carried out using the Dumas method. Foods were classified as either 'Fruits', 'Dried fruits', 'Cruciferous vegetables', 'Legumes', 'Other vegetables' or 'Starchy roots'. 'Dried fruits' and 'Legumes' had the highest median values of protein, while 'Fruits' and 'Cruciferous vegetables' contained the lowest median results. 'Legumes' contained the highest and 'Fruits' had the lowest median values for all five AAs. Variations were seen in AA content for individual foods. The results presented in this study provide useful data on the protein and AA content of fruits, vegetables and starchy roots which can be used in clinical practice. This further expansion of the current literature will help to improve diet quality and metabolic control among individuals with AA-related IMDs and UCDs.


Asunto(s)
Aminoácidos , Proteínas en la Dieta , Frutas , Raíces de Plantas , Almidón , Verduras , Verduras/química , Frutas/química , Raíces de Plantas/química , Aminoácidos/análisis , Proteínas en la Dieta/análisis , Almidón/análisis , Humanos , Enfermedades Metabólicas , Cromatografía Líquida de Alta Presión/métodos , Valor Nutritivo
14.
J Am Soc Mass Spectrom ; 35(9): 2222-2229, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39092573

RESUMEN

Angelicae sinensis radix (ASR) and Angelicae pubescentis radix (APR), as traditional herbal medicines, are often confused and doped in the material market. However, the traditional identification method is to characterize the whole herb with a single or a few components, which do not have representation and cannot realize the effective utilization of unknown components. Consequently, the result is not convincing. In addition, the whole process is time-consuming and labor-intensive. To avoid the confusion and adulteration of ASR and APR as well as to strengthen quality control and improve identification efficiency, in this study, a UHPLC-QTOF-MSE method was used to analyze ASR and APR. Based on digital representation, the shared data with high ionic strength were extracted from different batches of the same herbal medicine as their "digital identity". Further, the above "digital identity" was used as the benchmark for matching and identifying unknown samples to feedback on matching credibility (MC). The results showed that based on the "digital identities" of ASR and APR, the digital identification of two herbal samples can be realized efficiently and accurately at the individual level. And the matching credibility (MC) was higher than 94.00%, even if only 1% of APR or ASR in the mixed samples can still be identified efficiently and accurately. The study is of great practical significance for improving the efficiency of the identification of ASR and APR, cracking down on adulterated and counterfeit drugs, and strengthening the quality control of ASR and APR. In addition, it has important reference significance for developing nontargeted digital identification of herbal medicines at the individual level based on UHPLC-QTOF-MSE and "digital identity", which is beneficial to the construction of digital Chinese medicine and digital quality control.


Asunto(s)
Angelica sinensis , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Angelica sinensis/química , Espectrometría de Masas/métodos , Control de Calidad , Raíces de Plantas/química , Angelica/química
15.
J Ethnopharmacol ; 335: 118651, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094757

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Notopterygium incisum Ting ex H. T. Chang, also called 'Qianghuo', is a distinct umbelliferae plant in China. The rhizomes and roots of Notopterygium incisum have long been used to treat headaches, colds, analgesia and rheumatoid arthritis. It is a main traditional Chinese medicine in Qianghuo Yufeng Decoction, which was used to treat diseases such as liver and kidney insufficiency, mental paralysis and dementia. AIM OF THIS STUDY: As the most common dementia, Alzheimer's disease (AD) has a complicated pathogenesis. So far, there is no effective drug to prevent its pathological process. Previous research has shown that Notopterygium incisum root extract (NRE) may inhibit the release of Aß and the activation of tau in mice with AD. However, the effect of NRE on the pathological process of neuroinflammation is still unclear. MATERIALS AND METHODS: We determined the pro-inflammatory cytokines levels in BV2 cells exposed to LPS/Aß42 after treated with NRE. APP/PS1 and LPS-induced C57BL/6 neuroinflammatory mice were given NRE for 8 weeks and 5 days respectively to detect the pathological changes of neuroinflammation. RESULTS: The findings showed that NRE had a notable inhibitory effect on the levels of TNF-α and IL-1ß in BV2 cells induced by LPS/Aß42. The results of in vivo experiments show that following NRE treatment, there was a notable decrease in the number of activated microglia in the hippocampus of APP/PS1 mice as indicated by immunofluorescence results. Sholl analysis showed that microglia branches increased in NRE group, indicating that M1 microglia activation was inhibited. In the mice model injected with LPS in the tail vein, PCR and Western Blot results confirmed the anti-inflammatory effect of NRE, Nissl staining showed the protective effect of NRE on neurons, and immunofluorescence results also indicated that the activation of M1 microglia was inhibited. CONCLUSION: These results suggest that long term oral administration of NRE may inhibit neuroinflammation in the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Apiaceae , Ratones Endogámicos C57BL , FN-kappa B , Extractos Vegetales , Raíces de Plantas , Receptor Toll-Like 4 , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Receptor Toll-Like 4/metabolismo , Raíces de Plantas/química , Apiaceae/química , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo , Línea Celular , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo
16.
Int J Biol Macromol ; 277(Pt 3): 134274, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094881

RESUMEN

Althaea officinalis L. root mucilage holds promise for food industries due to its functional properties. Despite various extraction techniques, ohmic systems remain underexplored for mucilage extraction. This study aimed to compare the efficacy of mucilage extraction using ohmic systems with maceration and investigate their physicochemical properties. The mucilage extraction was carried out utilizing maceration (M), ohmic-assisted extraction (OAE), and ohmic-assisted vacuum extraction (OAVE). Various parameters were evaluated, such as densities and specific energy consumption. The mucilage obtained by OAE had the highest yield (8.9 %). The highest solubility corresponded to the mucilage obtained by the OAE system (85.18 % at 65 °C). OAVE mucilage had 76.16 % swelling and 82.5 g water/g dry sample binding capacity, while OAE mucilage had 19.6 g water/g dry sample binding capacity. The OAVE mucilage oil absorption (12.3 g oil/g dry sample) was almost twice that of the OAE system. Rheological analysis characterized them as a pseudoplastic behavior. DSC thermogram of mucilage samples exhibited a singular endothermic peak (92.05 to 108.3 °C). FTIR analysis highlighted that the primary constituents of mucilage samples predominantly consisted of polysaccharides. This study concluded that ohmic-assisted extraction was the most efficient method for obtaining mucilage. Further research could explore the potential applications of this mucilage.


Asunto(s)
Althaea , Raíces de Plantas , Polisacáridos , Reología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Althaea/química , Raíces de Plantas/química , Mucílago de Planta/química , Solubilidad , Fenómenos Químicos , Extractos Vegetales/química , Calor , Viscosidad
17.
J Agric Food Chem ; 72(35): 19312-19322, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166886

RESUMEN

This study investigated the uptake pathways, acropetal translocation, subcellular distribution, and biotransformation of OPEs by rice (Oryza sativa L.) after Cu exposure. The symplastic pathway was noted as the major pathway for the uptake of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) by rice roots. Cu exposure enhanced the accumulation of tri-OPEs in rice roots, and such enhancement was positively correlated with Cu concentrations, attributing to the Cu-induced root damage. The hydrophilic Cl-OPEs in the cell-soluble fraction of rice tissues were enhanced after Cu exposure, while the subcellular distributions of alkyl- and aryl-OPEs were not affected by Cu exposure. Significantly higher biotransformation rates of tri-OPEs to di-OPEs occurred in leaves, followed by those in stems and roots. Our study reveals the mechanisms associated with the uptake, translocation, and biotransformation of various OPEs in rice after Cu exposure, which provides new insights regarding the phytoremediation of soils cocontaminated with heavy metal and OPEs.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Cobre , Organofosfatos , Oryza , Raíces de Plantas , Contaminantes del Suelo , Oryza/metabolismo , Oryza/química , Oryza/efectos de los fármacos , Cobre/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Organofosfatos/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Ésteres/metabolismo , Ésteres/química
18.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201631

RESUMEN

Rosa davurica Pall. is widely used in traditional oriental herbal therapy, but its components and molecular mechanisms of action remain unclear. This study investigates the antidiabetic potential of Rosa davurica Pall. root extract (RDR) and elucidates its underlying molecular mechanisms with in vitro and in vivo models. Data from the current study show that RDR exhibits strong antioxidant activity and glucose homeostasis regulatory effects. It significantly impacts glucose homeostasis in C2C12 skeletal muscle cells by inhibiting α-glucosidase activity. Further molecular mechanistic studies revealed that RDR promoted glucose uptake by phosphorylation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC), but not Phosphatidylinositol 3-kinase (PI 3-kinase)/Akt in C2C12 skeletal muscle cells. These actions increased the expression and translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. In addition, RDR treatment in the STZ-induced diabetic rats remarkably improved the low body weight, polydipsia, polyphagia, hyperglycemia, and islet architecture and increased the insulin/glucose ratio. The liver (ALT and AST) and kidney marker enzyme (BUN and creatinine) levels were restored by RDR treatment as well. Phytochemical analysis identified eight major constituents in RDR, crucial for its antioxidant and antidiabetic activity. Through the molecular docking of representative glucose transporter GLUT4 with these compounds, it was confirmed that the components of RDR had a significantly high binding score in terms of structural binding. These findings from the current study highlight the antidiabetic effects of RDR. Collectively, our data suggest that RDR might be a potential pharmaceutical natural product for diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 4 , Hipoglucemiantes , Extractos Vegetales , Raíces de Plantas , Rosa , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Raíces de Plantas/química , Rosa/química , Ratas , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Línea Celular , Glucosa/metabolismo , Simulación del Acoplamiento Molecular , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
19.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201752

RESUMEN

Despite the existence of various therapeutic approaches, diabetes mellitus and its complications have been an increasing burden of mortality and disability globally. Hence, it is necessary to evaluate the efficacy and safety of medicinal plants to support existing drugs in treating diabetes. Xanthones, the main secondary metabolites found in Gentiana dinarica and Gentiana utriculosa, display various biological activities. In in vitro cultured and particularly in genetically transformed G. dinarica and G. utriculosa roots, there is a higher content of xanthones. The aim of this study was to investigate and compare antidiabetic properties of secondary metabolites (extracts) prepared from these two Gentiana species, cultured in vitro and genetically transformed with those collected from nature. We compare HPLC secondary metabolite profiles and the content of the main extract compounds of G. dinarica and G. utriculosa methanol extracts with their ability to scavenge DPPH free radicals and inhibit intestinal α-glucosidase in vitro. Anti-hyperglycemic activity of selected extracts was tested further in vivo on glucose-loaded Wistar rats. Our findings reveal that the most prominent radical scavenging potential and potential to control the rise in glucose level, detected in xanthone-rich extracts, were in direct correlation with an accumulation of xanthones norswertianin and norswertianin-1-O-primeveroside in G. dinarica and decussatin and decussatin-1-O-primeveroside in G. utriculosa.


Asunto(s)
Gentiana , Hipoglucemiantes , Extractos Vegetales , Ratas Wistar , Xantonas , Gentiana/química , Xantonas/farmacología , Xantonas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Masculino , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Glucemia/efectos de los fármacos , alfa-Glucosidasas/metabolismo , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Experimental/tratamiento farmacológico , Raíces de Plantas/química
20.
Mar Drugs ; 22(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195460

RESUMEN

The subcritical water extraction of Undaria pinnatifida (blade, sporophyll, and root) was evaluated to determine its chemical properties and biological activities. The extraction was conducted at 180 °C and 3 MPa. Root extracts exhibited the highest phenolic content (43.32 ± 0.19 mg phloroglucinol/g) and flavonoid content (31.54 ± 1.63 mg quercetin/g). Sporophyll extracts had the highest total sugar, reducing sugar, and protein content, with 97.35 ± 4.23 mg glucose/g, 56.44 ± 3.10 mg glucose/g, and 84.93 ± 2.82 mg bovine serum albumin (BSA)/g, respectively. The sporophyll contained the highest fucose (41.99%) and mannose (10.37%), whereas the blade had the highest galactose (48.57%) and glucose (17.27%) content. Sporophyll had the highest sulfate content (7.76%). Key compounds included sorbitol, glycerol, L-fucose, and palmitic acid. Root extracts contained the highest antioxidant activity, with IC50 values of 1.51 mg/mL (DPPH), 3.31 mg/mL (ABTS+), and 2.23 mg/mL (FRAP). The root extract exhibited significant α-glucosidase inhibitory activity with an IC50 of 5.07 mg/mL, indicating strong antidiabetic potential. The blade extract showed notable antihypertensive activity with an IC50 of 0.62 mg/mL. Hence, subcritical water extraction to obtain bioactive compounds from U. pinnatifida, supporting their use in functional foods, cosmetics, and pharmaceuticals is highlighted. This study uniquely demonstrates the variation in bioactive compound composition and bioactivities across different parts of U. pinnatifida, providing deeper insights. Significant correlations between chemical properties and biological activities emphasize the use of U. pinnatifida extracts for chronic conditions.


Asunto(s)
Antioxidantes , Extractos Vegetales , Undaria , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Undaria/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Agua/química , Raíces de Plantas/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/química , Antihipertensivos/farmacología , Antihipertensivos/aislamiento & purificación , Antihipertensivos/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fenoles/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Algas Comestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA