Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.191
Filtrar
1.
Mar Pollut Bull ; 207: 116905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241366

RESUMEN

Seawater desalination is one of the most feasible technologies for producing fresh water to address the water scarcity scenario worldwide. However, environmental concerns about the potential impact of brine discharge on marine ecosystems hinder or delay the development of desalination projects. In addition, scientific knowledge is lacking about the impact of brine discharges on the South America Pacific coast where desalination, is being developed. This paper presents the first monitoring results of brine discharge influence areas from seawater reverse osmosis desalination plants (SWRO) on the South America Pacific coast, using Chile as case study. Our results indicate that the combination of favorable oceanographic conditions and diffusers, results in the rapid dilution of brine discharge on coastal ecosystems; showing a faster dilution than other SWRO plants in other regions, such as Mediterranean or Arabian Gulf, with similar production characteristics. Also, the increase in salinity over the natural salinity in the brine-discharge-affected area was <5 % in a radius of <100 m from the discharge points. Further, according to the published literature and on our monitoring results, we propose a number of considerations (environmental regulation, best scientifically tested measures, environmental requirements) to achieve a long-term sustainable desalination operation.


Asunto(s)
Salinidad , Agua de Mar , Chile , Monitoreo del Ambiente/métodos , Sales (Química)/análisis , Ósmosis , Purificación del Agua/métodos , Océano Pacífico , Ecosistema
2.
Environ Sci Pollut Res Int ; 31(43): 55280-55300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227535

RESUMEN

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.


Asunto(s)
Biomasa , Luffa , Trimetoprim , Contaminantes Químicos del Agua , Purificación del Agua , Luffa/química , Adsorción , Contaminantes Químicos del Agua/química , Trimetoprim/química , Purificación del Agua/métodos , Agua/química , Cinética
3.
Environ Monit Assess ; 196(10): 956, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39299937

RESUMEN

Wastewater generated in dairies has a strong polluting potential and must be treated for disposal into water bodies or reuse. The objective of this work was to analyze the efficiency of removing pollutants through the processes used by a wastewater treatment plant (WWTP) of a dairy located in the state of Minas Gerais, Brazil. For this purpose, the results of the characterization analyses referring to raw and treated wastewater were interpreted. The results showed that the sequence of processes used in the WWTP (water/oil separation, dissolved air flotation, followed by biodegradation in an upflow anaerobic filter) is efficient in removing on average 99.1% of COD and 98.7% of BOD5. For treated wastewater, data on pH and concentration of total suspended solids, total ammoniacal nitrogen, surfactants, settleable solids, and oils and greases also met the standards for disposal into water bodies. For reuse in agriculture, treated wastewater can be used for irrigation, but it is recommended to additionally evaluate the Escherichia coli parameter. When evaluating the existence of linear correlation between COD and BOD5 data, it was possible to find only a moderate correlation (R2 equal to 0.7) for treated wastewater.


Asunto(s)
Industria Lechera , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Brasil , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
4.
J Water Health ; 22(9): 1606-1617, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340374

RESUMEN

Household water treatment (HWT) is recommended when safe drinking water is limited. To understand determinants of HWT adoption, we conducted a cross-sectional survey with 650 households across different regions in Haiti. Data were collected on 71 demographic and psychosocial factors and 2 outcomes (self-reported and confirmed HWT use). Data were transformed into 169 possible determinants of adoption across nine categories. We assessed determinants using logistic regression and, as machine learning methods are increasingly used, random forest analyses. Overall, 376 (58%) respondents self-reported treating or purchasing water, and 123 (19%) respondents had residual chlorine in stored household water. Both logistic regression and machine learning analyses had high accuracy (area under the receiver operating characteristic curve (AUC): 0.77-0.82), and the strongest determinants in models were in the demographics and socioeconomics, risk belief, and WASH practice categories. Determinants that can be influenced inform HWT promotion in Haiti. It is recommended to increase access to HWT products, provide cash and education on water treatment to emergency-impacted populations, and focus future surveys on known determinants of adoption. We found both regression and machine learning methods need informed, thoughtful, and trained analysts to ensure meaningful results and discuss the benefits/drawbacks of analysis methods herein.


Asunto(s)
Composición Familiar , Aprendizaje Automático , Purificación del Agua , Haití , Purificación del Agua/métodos , Humanos , Modelos Logísticos , Estudios Transversales , Agua Potable , Femenino , Masculino , Adulto , Abastecimiento de Agua , Factores Socioeconómicos
5.
Chemosphere ; 364: 143128, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159769

RESUMEN

Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 µg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 µg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.


Asunto(s)
Desinfección , Ozono , Purificación del Agua , Desinfección/métodos , Purificación del Agua/métodos , Proyectos Piloto , Escherichia coli/efectos de los fármacos , Desinfectantes/análisis , Agua Potable/microbiología , Agua Potable/química , Norovirus/efectos de los fármacos , Microbiología del Agua , Bromatos/análisis
6.
Int J Biol Macromol ; 278(Pt 2): 134697, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147352

RESUMEN

In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.


Asunto(s)
Cromo , Lignina , Contaminantes Químicos del Agua , Lignina/química , Cromo/química , Cromo/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Polímeros/química , Polímeros/síntesis química , Agua/química , Concentración de Iones de Hidrógeno , Polimerizacion
7.
Sci Rep ; 14(1): 19968, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198560

RESUMEN

Orange II, an azo dye used in textile and leather industries, is toxic and contributes to reducing dissolved oxygen in water. In this sense, agri-food waste adsorbents offer efficient, cost-effective dye removal. In this study, potato surpluses were evaluated as adsorbents for the removal of Orange II at 22 °C and pH values between 4 and 9. The adsorbents were characterized by their morphology, elemental composition, infrared spectra, and point of zero charge. Adsorption isotherms were analysed using Langmuir and Freundlich models, revealing that the Langmuir equation (0.933 < r2 > 0.882) better described the adsorption process compared to the Freundlich model (0.909 < r2 > 0.852). The maximum adsorption capacity at pH 4 was 1.1 and 2.3 times higher than at pH 7 and 9, respectively. This increased capacity at pH 4 was due to favourable electrostatic interactions between the cationic adsorbent surface and the anionic dye. A kinetic model was developed to understand the adsorption dynamics of Orange II, demonstrating high accuracy with coefficients of determination (r2) exceeding 0.99 across various pH values. The predictions of the kinetic model aligned well with the Langmuir isotherm results, indicating a strong theoretical foundation. The critical contact time required to achieve the minimum adsorbent concentration necessary for meeting a discharge limit of 14.7 mg L-1 was determined using both the Langmuir and kinetic models. Simulation profiles showed that when the adsorbent concentration was increased from 12 to 40 g L-1, the contact time necessary to achieve the discharge limit decreased from 26 to 3.35 h, highlighting the trade-off between contact time and cost. This study offers a cost-effective solution for wastewater treatment and presents a robust model for optimizing batch adsorption processes, marking a significant advancement in using potato surpluses for dye removal.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Solanum tuberosum , Contaminantes Químicos del Agua , Purificación del Agua , Solanum tuberosum/química , Compuestos Azo/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Bencenosulfonatos/química , Purificación del Agua/métodos , Colorantes/química
8.
Water Res ; 266: 122322, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213680

RESUMEN

Ultraviolet light-emitting diodes (UV-LEDs) have demonstrated the ability to inactivate microorganisms in water, offering an environmentally safer alternative to the conventional mercury lamp, in UV applications. While several studies have explored the microbiological effect of UVC-LEDs (200nm-280nm), limited information exists regarding their effects on waters with critical qualities. These critical qualities encompass bacteria, viruses, and protozoa - drinking water quality indicators defined by the World Health Organization for small water systems. For the first time, this work reports on the Escherichia coli, PhiX-174, MS2, and Cryptosporidium oocysts inactivation using a bench-scale UVC-LED (280 nm) water disinfection system. UV doses at a wavelength of 280 nm (UV280) of up to 143.4 mJ/cm2 were delivered under two quality-critical water conditions: filtered water (UV transmittance at 280 nm - UVT280 90.2 %) and WHO challenge water (UVT 15.7 %). Results revealed microbiological reductions dependent on exposure time and UVT. For UV280 dose of 16.1 mJ/cm2, 2.93-3.70 log E. coli reductions were observed in UVT 90.2 % and 15.7 %, 3.49-4.21 log for PhiX-174, 0.63-0.78 log for MS2, and 0.02-0.04 log for Cryptosporidium oocysts. Significantly higher UV280 doses of 143.4 mJ/cm2 led to reductions of 3.94-5.35 log for MS2 and 0.42-0.46 log for Cryptosporidium oocysts. Statistical analysis revealed that the sensitivity among the organisms to UV280 exposure was E. coli = PhiX-174 > MS2 >> Cryptosporidium oocysts. Although experiments with WHO challenge water posed greater challenges for achieving 1 log reduction compared to filtered water, this difference only proved statistically significant for PhiX-174 and MS2 reductions. Overall, UVC-LED technology demonstrated notable efficacy in microbiological inactivation, achieving significant reductions based on WHO scheme of evaluation for POU technologies in both bacteria and viruses even in critical-quality waters. The findings emphasize the potential for extending the application of UVC-LED as a viable solution for household water treatment.


Asunto(s)
Cryptosporidium , Desinfección , Escherichia coli , Levivirus , Rayos Ultravioleta , Microbiología del Agua , Purificación del Agua , Calidad del Agua , Cryptosporidium/efectos de la radiación , Desinfección/métodos , Escherichia coli/efectos de la radiación , Purificación del Agua/métodos , Levivirus/efectos de la radiación , Oocistos/efectos de la radiación , Bacteriófago phi X 174/efectos de la radiación
9.
An Acad Bras Cienc ; 96(suppl 1): e20230856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166547

RESUMEN

As it flows through the city of São Paulo, the Tietê River receives heavy discharges of industrial effluents and domestic sewage, resulting from the city's continuous urban expansion and the inadequacy of its sanitary sewage system. This study focused on an analysis of the efficiency of PGα21Ca and quaternary ammonium tannate, water purification products, based on coagulation-flocculation and sedimentation tests, followed by treatment with a hydrodynamic cavitation reactor associated with ozonation in the treatment of Tietê River water. The removal of turbidity, apparent color, and chemical oxygen demand (COD) were evaluated. Jar testing assays were conducted, and the best turbidity removal rates were obtained with a concentration of 300 mg L-1 for PGα21Ca and 150 mg L-1 for quaternary ammonium tannate. The coagulation-flocculation treatment removed approximately 93% of turbidity for both coagulants. After combining coagulation-flocculation with hydrodynamic cavitation with ozonation, the final COD removal rate applying PGα21Ca was 47.63% in 1 hour of reaction, while that of quaternary ammonium tannate was 40.13% in 2 hours of reaction. Although the results appear to indicate the superior performance of PGα21Ca, it should be noted that the treatment with quaternary ammonium tannate also provided good results in reducing turbidity, COD, and apparent color, using a smaller dose of this coagulant and that its use may be more advantageous from an environmental point of view, due to its natural composition.


Asunto(s)
Floculación , Ozono , Ríos , Purificación del Agua , Ozono/química , Ríos/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Hidrodinámica , Análisis de la Demanda Biológica de Oxígeno , Brasil
10.
Water Sci Technol ; 90(3): 807-823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141036

RESUMEN

The concrete industry is a significant consumer of drinking water and natural aggregates, such as sand and gravel. However, the scarcity of water and aggregate resources and the challenges associated with the disposal of construction and demolition waste prompted the exploration of alternative materials. This study investigates the feasibility of incorporating secondary treated wastewater from UASB reactors followed by trickling filters and mixed recycled aggregates as potential alternatives. To assess the viability of these alternatives, the study considered the replacement of 100% potable water with treated wastewater, as well as varying proportions of recycled gravel (20, 40, 60, 80, and 100%) and recycled sand (10, 20, 30, 40, and 100%). Physical and mechanical properties were negatively affected, but it was possible to reach compressive results over 40 MPa and splitting tensile strength over 4 MPa for almost all mixes. Regarding physical properties, the use of alternative materials caused poorer outcomes for density, water absorption, and air-void ratio. The limited magnitude of these detrimental effects indicates the potential of manufacturing concrete with the addition of combined treated wastewater and recycled aggregate as a viable strategy while enhancing reuse practices.


Asunto(s)
Materiales de Construcción , Reciclaje , Aguas Residuales , Reciclaje/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
11.
Sci Rep ; 14(1): 18916, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143177

RESUMEN

The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (•OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.


Asunto(s)
Clonazepam , Grafito , Fotólisis , Contaminantes Químicos del Agua , Grafito/química , Clonazepam/química , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Adsorción , Purificación del Agua/métodos , Cinética
12.
J Environ Manage ; 366: 121612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971060

RESUMEN

Productive activities such as pig farming are a fundamental part of the economy in Mexico. Unfortunately, because of this activity, large quantities of wastewater are generated that have a negative impact in the environment. This work shows an alternative for treating piggery wastewater based on advanced oxidation processes (Fenton and solar photo Fenton, SPF) that have been probed successfully in previous works. In the first stage, Fenton and SPF were carried out on a laboratory scale using a Taguchi L9-type experimental design. From the statistical analysis of this design, the operating parameters: pH, time, hydrogen peroxide concentration [H2O2], and iron ferrous concentration [Fe2+] that maximize the response variables: Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), and color were chosen. From these, a cascade forward neural network was implemented to establish a correlation between data from the variables to the physicochemical parameters to be measure being that a great fit of the data was obtained having a correlation coefficient of 0.99 which permits to optimize the pollutant degradation and predict the removal efficiencies at pilot scale but with a projection to a future industrial scale. A relevant result, it was found that the optimal values for maximizing the removal of physicochemical parameters were pH = 3, time = 60 min, H2O2/COD = 1.5 mg L-1, and H2O2/Fe2+ = 2.5 mg L-1. With these conditions degradation percentages of 91.44%, 47.14%, and 97.89% for COD, TOC, and color were obtained from the Fenton process, while for SPF the degradation percentage increased moderately. From the ANN analysis, the possibility to establish an intelligent system that permits to predict multiple results from operational conditions has been achieved.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Peróxido de Hidrógeno , Redes Neurales de la Computación , Aguas Residuales , Aguas Residuales/química , Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Animales , México , Purificación del Agua/métodos , Hierro/química , Oxidación-Reducción
13.
Chemosphere ; 362: 142730, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950742

RESUMEN

Photocatalytic membranes are a promising technology for water and wastewater treatment. Towards circular economy, extending the lifetime of reverse osmosis (RO) membranes for as long as possible is extremely important, due to the great amount of RO modules discarded every year around the world. Therefore, in the present study, photocatalytic membranes made of recycled post-lifespan RO membrane (polyamide thin-film composite), TiO2 nanoparticles and graphene oxide are used in the treatment tertiary-treated domestic wastewater to remove trace organic compounds (TrOCs). The inclusion of dopamine throughout the surface modification process enhanced the stability of the membranes to be used as long as 10 months of operation. We investigated TrOCs removal by the membrane itself and in combination with UV-C and visible light by LED. The best results were obtained with integrated membrane UV-C system at pH 9, with considerable reductions of diclofenac (92%) and antipyrine (87%). Changes in effluent pH demonstrated an improvement in the attenuation of TrOCs concentration at higher pHs. By modifying membranes with nanocomposites, an increase in membrane hydrophilicity (4° contact angle reduction) was demonstrated. The effect of the lamp position on the light fluence that reaches the membrane was assessed, and greater values were found in the middle of the membrane, providing parameters for process optimization (0.29 ± 0.10 mW cm-2 at the center of the membrane and 0.07 ± 0.03 mW cm-2 at the right and left extremities). Photocatalytic recycled TiO2-GO membranes have shown great performance to remove TrOCs and extend membrane lifespan, as sustainable technology to treat wastewater.


Asunto(s)
Grafito , Membranas Artificiales , Titanio , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Titanio/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Grafito/química , Eliminación de Residuos Líquidos/métodos , Catálisis , Purificación del Agua/métodos , Compuestos Orgánicos/química , Reciclaje/métodos , Rayos Ultravioleta , Ósmosis
14.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950799

RESUMEN

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.


Asunto(s)
Lignina , Azul de Metileno , Ultrafiltración , Contaminantes Químicos del Agua , Purificación del Agua , Azul de Metileno/química , Lignina/química , Lignina/análogos & derivados , Ultrafiltración/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Colorantes/química , Colorantes/aislamiento & purificación , Adsorción , Polímeros/química
15.
Environ Pollut ; 358: 124514, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986762

RESUMEN

Pesticides has transformed the agricultural industry, primarily by enhancing productivity. However, the indiscriminate use of such compounds can adversely affect human health and disrupt ecosystem balance. Limited knowledge exists regarding the removal of these compounds from water, particularly for organophosphate pesticides when employing conventional treatment technologies. Therefore, this study aimed to assess the removal of acephate (ACE) and methamidophos (MET) - considered priority pesticides in Brazil - from waters with high and low turbidity during the clarification process carried out with aluminum sulfate (AS) and ferric chloride (FC), either alone or combined with powdered activated carbon (PAC) adsorption. All water samples were submitted to solid phase extraction (SPE C18 cartridges) prior to acephate and methamidophos analysis by HPLC MS/MS. The clarification process with either AS or FC coagulant did not efficiently remove acephate or methamidophos and maximum average removal (27 %) was observed with waters of high turbidity when using ferric chloride as coagulant. Addition of mineral PAC was also ineffective for removing both pesticides. However, the use of vegetable PAC (10 mg/L) resulted in better removal percentages, up to 80%, but only for methamidophos. The limited removal rates were attributed to the high hydrophilicity of acephate and methamidophos, along with their neutral charge at coagulation pH. These factors hinder the interaction of such organophosphorus pesticides with the flocs formed during coagulation as well as with PAC surface.


Asunto(s)
Compuestos Organotiofosforados , Fosforamidas , Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Organotiofosforados/química , Contaminantes Químicos del Agua/análisis , Adsorción , Purificación del Agua/métodos , Compuestos Férricos/química , Brasil , Compuestos de Alumbre/química , Extracción en Fase Sólida/métodos , Plaguicidas , Cloruros
16.
Int J Biol Macromol ; 277(Pt 1): 134063, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038565

RESUMEN

More sustainable materials have been becoming an important concern of worldwide scientists, and cellulosic materials are one alternative in water decontamination. An efficient strategy to improve removal capacity is functionalizing or incorporating nanomaterials in cellulose-based materials. The new hybrid cDAC/ZnONPs was produced by green synthesis of zinc oxide nanoparticles (ZnONPs), promoting the in situ reduction and immobilization on the cationic dialdehyde cellulose microfibers (cDAC) surface to remove Congo red dye from water. cDAC/ZnONPs was characterized by scanning electron microscopy (SEM-EDS) and infrared spectroscopy (FTIR), which showed efficient nanoparticles reduction. Adsorption efficiency on cationic cellulose surface was investigated by pH, contact time, initial concentration, and dye selectivity tests. The material followed the H isotherm model, which resulted in a maximum adsorption capacity of 1091.16 mg/g. Herein, was developed an efficient and ecologically correct new adsorbent, highly effective in Congo red dye adsorption even at high concentrations, suitable for the remediation of contaminated industrial effluents.


Asunto(s)
Rojo Congo , Contaminantes Químicos del Agua , Purificación del Agua , Óxido de Zinc , Óxido de Zinc/química , Rojo Congo/química , Rojo Congo/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Purificación del Agua/métodos , Tecnología Química Verde , Concentración de Iones de Hidrógeno , Celulosa/química , Celulosa/análogos & derivados , Colorantes/química , Nanopartículas/química , Cinética , Nanopartículas del Metal/química , Celulosa Oxidada/química , Cationes/química
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124739, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959692

RESUMEN

Chlorine is a common disinfectant used in water treatment. However, its reaction with organic matter can lead to the formation of harmful byproducts, such as trihalomethanes (THMs), which are potentially carcinogenic. To address this issue, the aim of this work was to enhance a colorimetric method capable of quantifying THMs in drinking water through UV/Vis Spectrophotometry, using cost-effective equipment, and validate this methodology for the first time according to established validation protocols. The method's innovation involved replacing the solvent pentane with the more common hexane, along with adjusting the heating ramp, elucidating the mechanisms involved in the process. This method involves the reaction between THMs, pyridine, and NaOH to produce a colored compound, which is then monitored through molecular absorption spectroscopy in the visible region. The method was thoroughly validated, achieving a limit of detection of 13.41 µg L-1 and a limit of quantification of 40.65 µg L-1. Recovery assays ranged from 86.1 % to 90.7 %, demonstrating high accuracy. The quality of the linear fit for the analytical curve exceeded R2 > 0.98. The method was applied to real samples, revealing concentrations ranging from 13.58 to 55.46 µg L-1, all way below the legal limit in Brazil (Maximum Contaminant Levels (MCL) = 100 µg L-1). This cost-effective and straightforward method is suitable for integration into water treatment plant laboratories.


Asunto(s)
Agua Potable , Trihalometanos , Contaminantes Químicos del Agua , Purificación del Agua , Trihalometanos/análisis , Agua Potable/análisis , Agua Potable/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Límite de Detección , Espectrofotometría Ultravioleta/métodos , Reproducibilidad de los Resultados , Colorimetría/métodos
18.
Chemosphere ; 363: 142738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004147

RESUMEN

Herein, graphene oxide was used as the highly efficient phenazopyridine adsorbent from aqueous medium, synthetic, and human urine. The nanoadsorbent was characterized by different instrumental techniques. The adsorption capacity (1253.17 mg g-1) was reached at pH 5.0, using an adsorbent dosage of 0.125 g L-1 at 298 K. The Sips and Langmuir described the equilibrium data well. At the same time, the pseudo-second order was more suitable for fitting the kinetic data. Thermodynamic parameters revealed the exothermic nature of adsorption with an increase in randomness at the solid-liquid interface. The magnitude of the enthalpy variation value indicates that the process involves the physisorption phenomenon. At the same time, ab initio molecular dynamics data corroborated with the thermodynamic results, indicating that adsorbent and adsorbate establish hydrogen bonds through the amine groups (adsorbate) and hydroxyl groups on the adsorbent surface (weak interactions). Electrostatic interactions are also involved. Additionally, the adsorption assays conducted in simulated medium and human urine showed the excellent performance of adsorbent material to remove the drug in real concentrations excreted by the kidneys (removal values higher than 60%).


Asunto(s)
Grafito , Fenazopiridina , Termodinámica , Contaminantes Químicos del Agua , Grafito/química , Adsorción , Fenazopiridina/química , Fenazopiridina/orina , Humanos , Contaminantes Químicos del Agua/química , Cinética , Teoría Funcional de la Densidad , Purificación del Agua/métodos , Orina/química
19.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842769

RESUMEN

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Asunto(s)
Fuentes de Energía Bioeléctrica , Manihot , Aguas Residuales , Fuentes de Energía Bioeléctrica/microbiología , Manihot/química , Aguas Residuales/microbiología , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Purificación del Agua/métodos
20.
Environ Sci Pollut Res Int ; 31(31): 43561-43582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918295

RESUMEN

The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compounds, focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to values below 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animal and fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.


Asunto(s)
Biodegradación Ambiental , Eichhornia , Aguas Residuales , Contaminantes Químicos del Agua , Eichhornia/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Desarrollo Sostenible , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA