Your browser doesn't support javascript.
loading
Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale.
de Carvalho Costa, Leticia Reggiane; Li, Lin; Haak, Laura; Teel, Lydia; Feris, Liliana Amaral; Marchand, Eric; Pagilla, Krishna R.
Afiliación
  • de Carvalho Costa LR; Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil.
  • Li L; Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
  • Haak L; Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
  • Teel L; Truckee Meadows Water Authority, Reno, NV, 89502, USA.
  • Feris LA; Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil.
  • Marchand E; Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
  • Pagilla KR; Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA. Electronic address: pagilla@unr.edu.
Chemosphere ; 364: 143128, 2024 Aug 17.
Article en En | MEDLINE | ID: mdl-39159769
ABSTRACT
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 µg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 µg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido