Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.031
Filtrar
1.
Commun Biol ; 7(1): 1127, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271811

RESUMEN

Primordial germ cells (PGCs) are vital for producing sperm and eggs and are crucial for conserving chicken germplasm and creating genetically modified chickens. However, efforts to use PGCs for preserving native chicken germplasm and genetic modification via CRISPR/Cas9 are limited. Here we show that we established 289 PGC lines from eight Chinese chicken populations with an 81.6% success rate. We regenerated Piao chickens by repropagating cryopreserved PGCs and transplanting them into recipient chickens, achieving a 12.7% efficiency rate. These regenerated chickens carried mitochondrial DNA from female donor PGC and the rumplessness mutation from both male and female donors. Additionally, we created the TYRP1 (tyrosinase-related protein 1) knockout (KO) PGC lines via CRISPR/Cas9. Transplanting KO cells into male recipients and mating them with wild-type hens produced four TYRP1 KO chickens with brown plumage due to reduced eumelanin production. Our work demonstrates efficient PGC culture, cryopreservation, regeneration, and gene editing in chickens.


Asunto(s)
Sistemas CRISPR-Cas , Pollos , Criopreservación , Células Germinativas , Animales , Pollos/genética , Células Germinativas/metabolismo , Femenino , Masculino , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Edición Génica/métodos , Regeneración/genética , Animales Modificados Genéticamente , Quimera/genética , Técnicas de Inactivación de Genes
2.
Microb Cell Fact ; 23(1): 238, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223542

RESUMEN

BACKGROUND: Benzyl acetate is an aromatic ester with a jasmine scent. It was discovered in plants and has broad applications in food, cosmetic, and pharmaceutical industries. Its current production predominantly relies on chemical synthesis. In this study, Escherichia coli was engineered to produce benzyl acetate. RESULTS: Two biosynthetic routes based on the CoA-dependent ß-oxidation pathway were constructed in E. coli for benzyl acetate production. In route I, benzoic acid pathway was extended to produce benzyl alcohol by combining carboxylic acid reductase and endogenous dehydrogenases and/or aldo-keto reductases in E. coli. Benzyl alcohol was then condensed with acetyl-CoA by the alcohol acetyltransferase ATF1 from yeast to form benzyl acetate. In route II, a plant CoA-dependent ß-oxidation pathway via benzoyl-CoA was assessed for benzyl alcohol and benzyl acetate production in E. coli. The overexpression of the phosphotransacetylase from Clostridium kluyveri (CkPta) further improved benzyl acetate production in E. coli. Two-phase extractive fermentation in situ was adopted and optimized for benzyl acetate production in a shake flask. The most optimal strain produced 3.0 ± 0.2 g/L benzyl acetate in 48 h by shake-flask fermentation. CONCLUSIONS: We were able to establish the whole pathway for benzyl acetate based on the CoA-dependent ß-oxidation in single strain for the first time. The highest titer for benzyl acetate produced from glucose by E. coli is reported. Moreover, cinnamyl acetate production as an unwanted by-product was very low. Results provided novel information regarding the engineering benzyl acetate production in microorganisms.


Asunto(s)
Escherichia coli , Glucosa , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Glucosa/metabolismo , Fermentación , Acetatos/metabolismo , Oxidación-Reducción , Acetilcoenzima A/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Compuestos de Bencilo/metabolismo
3.
Int J Mycobacteriol ; 13(3): 258-264, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39277887

RESUMEN

BACKGROUND: Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan. METHODS: The study was carried out at the National Tuberculosis Reference Laboratory (NTRL) in Kenya in the period between January and October 2022. A total of 243 Mycobacterium tuberculosis (M.tb) clinical isolates were included in the study. These isolates comprised of 50 isolates with mutations in rpoB, 51 isolates with katG mutations, 51 isolates with mutations in inhA, and 91 M.tb isolates lacking mutations in these genes based on Genotype MTBDRplus results. DNA from the isolates was extracted using the FluoroLyse extraction kit. Real-time polymerase chain reaction targeting the rpoB, InhA, and katG genes was performed using the FluoroType MTBDR amplification mix. Isolates with discordant results between Genotype MTBDRplus and FluoroCycler® MTBDR assays underwent targeted sequencing for the respective genes, then, sequences were analyzed for mutations using Geneious version 11.0 software. RESULTS: The sensitivity of the Fluorocycler XT MTBDR assay for the detection of mutations that confer drug resistance was 86% (95% confidence interval [CI] 73.0-94.0) for rpoB, 96% (95% CI 87-100) for katG and 92% (95% CI 81-98) for inhA. The assay's specificity was 97% (95% CI 93-99) for rpoB, 98% (95% CI 96-100) for katG, and 97% (95% CI 93-99) for inhA. CONCLUSION: The diagnostic accuracy of FluoroType MTBDR for the detection of mutations conferring resistance to rifampicin and isoniazid was high compared with that of Genotype MTBDRplus and demonstrates its suitability as a replacement assay for Genotype MTBDRplus.


Asunto(s)
Antituberculosos , Isoniazida , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Rifampin , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Humanos , Isoniazida/farmacología , Kenia , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Mutación , Sensibilidad y Especificidad , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Catalasa/genética , Genotipo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Oxidorreductasas/genética
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273329

RESUMEN

The alternative oxidase (AOX), a common terminal oxidase in the electron transfer chain (ETC) of plants, plays a crucial role in stress resilience and plant growth and development. Oat (Avena sativa), an important crop with high nutritional value, has not been comprehensively studied regarding the AsAOX gene family. Therefore, this study explored the responses and potential functions of the AsAOX gene family to various abiotic stresses and their potential evolutionary pathways. Additionally, we conducted a genome-wide analysis to explore the evolutionary conservation and divergence of AOX gene families among three Avena species (Avena sativa, Avena insularis, Avena longiglumis) and four Poaceae species (Avena sativa, Oryza sativa, Triticum aestivum, and Brachypodium distachyon). We identified 12 AsAOX, 9 AiAOX, and 4 AlAOX gene family members. Phylogenetic, motif, domain, gene structure, and selective pressure analyses revealed that most AsAOXs, AiAOXs, and AlAOXs are evolutionarily conserved. We also identified 16 AsAOX segmental duplication pairs, suggesting that segmental duplication may have contributed to the expansion of the AsAOX gene family, potentially preserving these genes through subfunctionalization. Chromosome polyploidization, gene structural variations, and gene fragment recombination likely contributed to the evolution and expansion of the AsAOX gene family as well. Additionally, we hypothesize that AsAOX2 may have potential function in resisting wounding and heat stresses, while AsAOX4 could be specifically involved in mitigating wounding stress. AsAOX11 might contribute to resistance against chromium and waterlogging stresses. AsAOX8 may have potential fuction in mitigating ABA-mediated stress. AsAOX12 and AsAOX5 are most likely to have potential function in mitigating salt and drought stresses, respectively. This study elucidates the potential evolutionary pathways of the AsAOXs gene family, explores their responses and potential functions to various abiotic stresses, identifies potential candidate genes for future functional studies, and facilitates molecular breeding applications in A. sativa.


Asunto(s)
Avena , Evolución Molecular , Proteínas Mitocondriales , Familia de Multigenes , Oxidorreductasas , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Avena/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Triticum/genética , Triticum/enzimología , Duplicación de Gen
5.
Methods Enzymol ; 703: 65-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261004

RESUMEN

Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.


Asunto(s)
Oxidación-Reducción , Oxigenasas , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Rhodococcus/enzimología , Rhodococcus/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química
6.
Indian J Tuberc ; 71(4): 383-388, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39278670

RESUMEN

BACKGROUND: Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (M. tuberculosis). The world is currently facing challenges due to the spread of anti-tuberculosis drug-resistant of M. tuberculosis. Isoniazid-resistant (INH), is one of the first-line anti-tuberculosis agents that has a high resistance case. This study used Multiplex allele-specific Polymerase Chain Reaction (MAS-PCR) to detect the most common mutations associated with isoniazid resistance on inhA, katG, and ahpC gene. METHODS: This study used samples from clinical isolates of M. tuberculosis which had been tested for their antibiotic sensitivity of first-line anti-tuberculosis drugs. The DNA extraction process was carried out using the boiling method and then amplified with specific primers for inhA, katG, and ahpC genes using the MAS-PCR method. The results are then read on the electrophoretic gel with an interpretation of the mutation gene when the target gene DNA bands were absent according to the allele-specific fragments target. RESULTS: A total of 200 isolates were tested in this study consisting of isoniazid-resistant and susceptible with the largest distribution of Multi-Drug Resistant (MDR) isolates with a total of 146 isolates (73%). The most significant gene mutation was on the ahpC gene in 61 isolates (30,5%) and the combination mutation of the katG + ahpC gene in 52 isolates (26%) with sensitivity and specificity of the test reaching 87% and 42% for the detection of INH-resistant. CONCLUSION: Mutation on the ahpC gene has the highest percentage in this study. AhpC gene can be considered one of the essential genes to be tested for the cause of isoniazid-resistant. Using MAS-PCR for detecting gene mutation in isoniazid-resistant was simple and easy, it has the potential to be widely used as a rapid screening molecular test.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Catalasa , Isoniazida , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Indonesia , Isoniazida/farmacología , Isoniazida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Catalasa/genética , Oxidorreductasas/genética , Pruebas de Sensibilidad Microbiana , Femenino , Masculino , Adulto , Reacción en Cadena de la Polimerasa Multiplex , Farmacorresistencia Bacteriana Múltiple/genética
7.
Biomolecules ; 14(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39199377

RESUMEN

The conversion of nitrate to ammonium, i.e., nitrate reduction, is a major consumer of reductants in plants. Previous studies have reported that the mitochondrial alternative oxidase (AOX) is upregulated under limited nitrate reduction conditions, including no/low nitrate or when ammonium is the sole nitrogen (N) source. Electron transfer from ubiquinone to AOX bypasses the proton-pumping complexes III and IV, thereby consuming reductants efficiently. Thus, upregulated AOX under limited nitrate reduction may dissipate excessive reductants and thereby attenuate oxidative stress. Nevertheless, so far there is no firm evidence for this hypothesis due to the lack of experimental systems to analyze the direct relationship between nitrate reduction and AOX. We therefore developed a novel culturing system for A. thaliana that manipulates shoot activities of nitrate reduction and AOX separately without causing N starvation, ammonium toxicity, or lack of nitrate signal. Using shoots processed with this system, we examined genome-wide gene expression and growth to better understand the relationship between AOX and nitrate reduction. The results showed that, only when nitrate reduction was limited, AOX deficiency significantly upregulated genes involved in mitochondrial oxidative stress, reductant shuttles, and non-phosphorylating bypasses of the respiratory chain, and inhibited growth. Thus, we conclude that AOX alleviates mitochondrial oxidative stress and sustains plant growth under limited nitrate reduction.


Asunto(s)
Arabidopsis , Mitocondrias , Proteínas Mitocondriales , Nitratos , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Compuestos de Amonio/metabolismo
8.
Int J Biol Macromol ; 277(Pt 3): 134194, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097061

RESUMEN

Cytokinin oxidase/dehydrogenase (CKX) regulates cytokinin levels in plants which are vital for plant growth and development. However, there is a paucity of evidence regarding their role in controlling embryo/seed development in pigeonpea. This comprehensive study provides information on the identification and characterization of CKX genes in pigeonpea. A genome-wide analysis identified 18 CKX genes, each with distinct structure, expression patterns, and possible diverse functions. Domain analysis revealed the presence of the sequences including FAD and CK-Binding domain, and subcellular localization analysis showed that almost 50 % of them reside within the nucleus. They were observed to be located unevenly on chromosome numbers 2, 4, 6, 7, and 11 with a majority of them present on the scaffolds. The 8 homologous pairs and various orthologous gene pairs provided further insights into their evolution pattern. Further, SNP/Indels variation in CKX genes and haplotype groups among contrasting genotypes for SNPP (seed number per pod) were analyzed. Spatiotemporal expression analysis revealed the significant expression pattern of CcCKX15, CcCKX17, and CcCKX2 in genotypes carrying low SNPP reiterating their possible role as negative regulators. These genes can be potential targets to undertake seed and biomass improvement in pigeonpea.


Asunto(s)
Cajanus , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas , Filogenia , Semillas , Cajanus/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Sintenía , Familia de Multigenes , Genómica/métodos , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple
9.
Int J Mol Sci ; 25(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39201660

RESUMEN

Cytokinins (CKs) are a group of phytohormones that are involved in plant growth, development, and disease resistance. The isopentenyl transferase (IPT) and cytokinin oxidase/dehydrogenase (CKX) families comprise key enzymes controlling CK biosynthesis and degradation. However, an integrated analysis of these two gene families in radish has not yet been explored. In this study, 13 RsIPT and 12 RsCKX genes were identified and characterized, most of which had four copies in Brassica napus and two copies in radish and other diploid Brassica species. Promoter analysis indicated that the genes contained at least one phytohormone or defense and stress responsiveness cis-acting element. RsIPTs and RsCKXs were expanded through segmental duplication. Moreover, strong purifying selection drove the evolution of the two gene families. The expression of the RsIPT and RsCKX genes distinctly showed diversity in different tissues and developmental stages of the root. Expression profiling showed that RsCKX1-1/1-2/1-3 was significantly upregulated in club-resistant materials during primary infection, suggesting their vital function in clubroot resistance. The interaction network of CKX proteins with similar 3D structures also reflected the important role of RsCKX genes in disease resistance. This study provides a foundation for further functional study on the IPT and CKX genes for clubroot resistance improvement in Raphanus.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxidorreductasas , Enfermedades de las Plantas , Proteínas de Plantas , Raphanus , Raphanus/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Perfilación de la Expresión Génica
10.
BMC Genomics ; 25(1): 763, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107700

RESUMEN

Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.


Asunto(s)
Carbono , Transcriptoma , Carbono/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Redes y Vías Metabólicas , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Agaricales/genética , Agaricales/metabolismo , Hongos Shiitake/metabolismo , Hongos Shiitake/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
11.
Plant Physiol Biochem ; 215: 109045, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154421

RESUMEN

Iron (Fe) toxicity is a major abiotic stress in lowland rice production. Breeding tolerant varieties has proven challenging due to the complex genetic architecture of Fe toxicity tolerance and the strong genotype-by-environment interactions. Additionally, conventional methods for phenotyping visible stress symptoms are often inaccurate, inconsistent, and lack reproducibility. In our previous work, we identified that ascorbate redox regulation, mediated by the activities of dehydroascorbate reductase (DHAR) and ascorbate oxidase (AO), contributed to high tolerance in an indica rice genotype across various environments. To explore whether this mechanism is common among other rice genotypes, we selected ten genotypes with contrasting stress symptoms under Fe-toxic conditions to examine the roles of DHAR and AO in regulating Fe toxicity tolerance. Additionally, we aimed to develop objective and accurate image-based phenotyping methods to replace the traditional leaf bronzing scoring method. Among the ten genotypes we tested, we found significant positive correlations between DHAR activity and stress symptoms in plants grown under both Fe toxicity and control conditions, suggesting a general link between ascorbate redox regulation and Fe toxicity tolerance. Using RGB signals from leaf images of plants exposed to 1000 mg/L Fe2+, we evaluated 36 different color indices to quantify stress symptoms. We identified the normalized green‒red difference index as most significant in quantifying stress symptoms under Fe toxicity conditions. Our findings suggest that DHAR activity could be potentially employed as a biomarker in the screening of rice germplasms and breeding tolerant cultivars to Fe toxicity.


Asunto(s)
Ácido Ascórbico , Hierro , Oryza , Oxidación-Reducción , Ácido Ascórbico/metabolismo , Oryza/metabolismo , Oryza/genética , Oryza/efectos de los fármacos , Hierro/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Genotipo , Ascorbato Oxidasa/metabolismo , Ascorbato Oxidasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estrés Fisiológico , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos
12.
J Hazard Mater ; 478: 135580, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39186845

RESUMEN

Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.


Asunto(s)
Arsénico , Exosomas , Ferroptosis , MicroARNs , Microglía , Neuronas , MicroARNs/metabolismo , MicroARNs/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Ferroptosis/efectos de los fármacos , Arsénico/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Humanos , Línea Celular
13.
J Agric Food Chem ; 72(33): 18412-18422, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39120516

RESUMEN

Cytochrome c oxidase (Cox) is a crucial terminal oxidase in the electron transport chain. In this study, we generated 14 Cox gene deletion or overexpression mutants in Fusarium graminearum. Fungicide sensitivity tests revealed that 11 Cox gene deletion mutants displayed resistance to pyraclostrobin, while 10 overexpression mutants showed hypersensitivity. RNA-Seq and RT-qPCR analyses demonstrated the upregulation of FgAox (alternative oxidase in F. graminearum), FgAod2, and FgAod5 (alternative oxidase deficiency in F. graminearum) in ΔFgCox4-2 and ΔFgCox17-75 mutants. In 11 Cox gene deletion mutants, FgAox expression was significantly upregulated, whereas in 10 Cox gene overexpression mutants, it was significantly downregulated. FgAox overexpression mutants exhibit resistance to pyraclostrobin, while FgAox deletion mutants show hypersensitivity to pyraclostrobin. FgAod2 and FgAod5 were identified as transcription factors for FgAox. Our findings reveal that FgCox influences pyraclostrobin sensitivity by regulating FgAox through FgAod2 and FgAod5. Understanding pyraclostrobin resistance mechanisms in F. graminearum could help develop better fungicide rotation and application strategies to manage resistance and guide the creation of new fungicides targeting different pathways.


Asunto(s)
Complejo IV de Transporte de Electrones , Proteínas Fúngicas , Fungicidas Industriales , Fusarium , Estrobilurinas , Factores de Transcripción , Fusarium/genética , Fusarium/enzimología , Estrobilurinas/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Regulación Fúngica de la Expresión Génica , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
14.
Ann Clin Microbiol Antimicrob ; 23(1): 81, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198827

RESUMEN

BACKGROUND: The whole-genome sequencing (WGS) is becoming an increasingly effective tool for rapid and accurate detection of drug resistance in Mycobacterium tuberculosis complex (MTBC). This approach, however, has still been poorly evaluated on strains from Central and Eastern European countries. The purpose of this study was to assess the performance of WGS against conventional drug susceptibility testing (DST) for the detection of multi-drug resistant (MDR) phenotypes among MTBC clinical strains from Poland and Lithuania. METHODS: The study included 208 MTBC strains (130 MDR; 78 drug susceptible), recovered from as many tuberculosis patients in Lithuania and Poland between 2018 and 2021. Resistance to rifampicin (RIF) and isoniazid (INH) was assessed by Critical Concentration (CC) and Minimum Inhibitory Concentration (MIC) DST as well as molecular-based techniques, including line-probe assay (LPA) and WGS. The analysis of WGS results was performed using bioinformatic pipeline- and software-based tools. RESULTS: The results obtained with the CC DST were more congruent with those by LPA compared to pipeline-based WGS. Software-based tools showed excellent concordance with pipeline-based analysis in prediction of RIF/INH resistance. The RIF-resistant strains demonstrated a relatively homogenous MIC distribution with the mode at the highest tested MIC value. The most frequent RIF-resistance conferring mutation was rpoB S450L. The mode MIC for INH was two-fold higher among double katG and inhA mutants than among single katG mutants. The overall rate of discordant results between all methods was calculated at 5.3%. Three strains had discordant results by both genotypic methods (LPA and pipeline-based WGS), one strain by LPA only, three strains by MIC DST, two strains by both MIC DST and pipeline-based WGS, and the remaining two strains showed discordant results with all three methods, compared to CC DST. CONCLUSIONS: Considering MIC DST results, current CCs of the first-line anti-TB drugs might be inappropriately high and may need to be revised. Both molecular methods demonstrated 100% specificity, while pipeline-based WGS had slightly lower sensitivity for RIF and INH than LPA, compared to CC DST.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Isoniazida , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Fenotipo , Rifampin , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Isoniazida/farmacología , Rifampin/farmacología , Proteínas Bacterianas/genética , Polonia , Lituania , ARN Polimerasas Dirigidas por ADN/genética , Oxidorreductasas/genética , Catalasa/genética , Mutación
15.
Microb Biotechnol ; 17(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160605

RESUMEN

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Asunto(s)
Metano , Oxidorreductasas , Oxigenasas , Proteínas Recombinantes , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Archaea/enzimología , Archaea/genética , Archaea/metabolismo
16.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 1-7, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097902

RESUMEN

Improving crop plants using biotechnological implications is a promising and modern approach compared to traditional methods. High-temperature exposure to the reproductive stage induces flower abortion and declines grain filling performance, leading to smaller grain production and low yield in lentil and other legumes. Thus, cloning effective candidate genes and their implication in temperature stress tolerance in lentil (Lens culinaris Medik.) using biotechnological tools is highly demandable. The 12-oxophytodienoic acid reductases (OPRs) are flavin mononucleotide-dependent oxidoreductases with vital roles in plants. They are members of the old yellow enzyme (OYE) family. These enzymes are involved in the octadecanoid pathway, which contributes to jasmonic acid biosynthesis and is essential in plant stress responses. Lentil is one of the vital legume crops affected by the temperature fluctuations caused by global warming. Therefore, in this study, the LcOPR1 gene was successfully cloned and isolated from lentils using RT-PCR to evaluate its functional responses in lentil under heat stress. The bioinformatics analysis revealed that the full-length cDNA of LcOPR1 was 1303 bp, containing an 1134 bp open reading frames (ORFs), encoding 377 amino acids with a predicted molecular weight of 41.63 and a theoretical isoelectric point of 5.61. Bioinformatics analyses revealed that the deduced LcOPR1 possesses considerable homology with other plant 12-oxophytodienoic acid reductases (OPRs). Phylogenetic tree analysis showed that LcOPR1 has an evolutionary relationship with other OPRs in different plant species of subgroup I, containing enzymes that are not required for jasmonic acid biosynthesis. The expression analysis of LcOPR1 indicated that this gene is upregulated in response to the heat-stress condition and during recovery in lentil. This study finding might be helpful to plant breeders and biotechnologists in LcOPR1 engineering and/or plant breeding programs in revealing the biological functions of LcOPR1 in lentils and the possibility of enhancing heat stress tolerance by overexpressing LcOPR1 in lentil and other legume plants under high temperature.


Asunto(s)
Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Lens (Planta) , Filogenia , Lens (Planta)/genética , Lens (Planta)/enzimología , Clonación Molecular/métodos , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Calor , Genes de Plantas , Respuesta al Choque Térmico/genética , Oxilipinas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
17.
Nat Commun ; 15(1): 6560, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095478

RESUMEN

Methanogenic hydrocarbon degradation can be carried out by archaea that couple alkane oxidation directly to methanogenesis, or by syntrophic associations of bacteria with methanogenic archaea. However, metagenomic analyses of methanogenic environments have revealed other archaea with potential for alkane degradation but apparent inability to form methane, suggesting the existence of other modes of syntrophic hydrocarbon degradation. Here, we provide experimental evidence supporting the existence of a third mode of methanogenic degradation of hydrocarbons, mediated by syntrophic cooperation between archaeal partners. We collected sediment samples from a hot spring sediment in Tengchong, China, and enriched Hadarchaeota under methanogenic conditions at 60 °C, using hexadecane as substrate. We named the enriched archaeon Candidatus Melinoarchaeum fermentans DL9YTT1. We used 13C-substrate incubations, metagenomic, metatranscriptomic and metabolomic analyses to show that Ca. Melinoarchaeum uses alkyl-coenzyme M reductases (ACRs) to activate hexadecane via alkyl-CoM formation. Ca. Melinoarchaeum likely degrades alkanes to carbon dioxide, hydrogen and acetate, which can be used as substrates by hydrogenotrophic and acetoclastic methanogens such as Methanothermobacter and Methanothrix.


Asunto(s)
Alcanos , Archaea , Metano , Alcanos/metabolismo , Metano/metabolismo , Archaea/metabolismo , Archaea/genética , Manantiales de Aguas Termales/microbiología , Sedimentos Geológicos/microbiología , Filogenia , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , China , Dióxido de Carbono/metabolismo , Biodegradación Ambiental , Oxidación-Reducción
18.
Plant Cell Rep ; 43(8): 207, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096362

RESUMEN

KEY MESSAGE: The Osckx2 mutant accumulates cytokinin thereby enhancing panicle branching, grain yield, and drought tolerance, marked by improved survival rate, membrane integrity, and photosynthetic function. Cytokinins (CKs) are multifaceted hormones that regulate growth, development, and stress responses in plants. Cytokinins have been implicated in improved panicle architecture and grain yield; however, they are inactivated by the enzyme cytokinin oxidase (CKX). In this study, we developed a cytokinin oxidase 2 (Osckx2)-deficient mutant using CRISPR/Cas9 gene editing in indica rice and assessed its function under water-deficit and salinity conditions. Loss of OsCKX2 function increased grain number, secondary panicle branching, and overall grain yield through improved cytokinin content in the panicle tissue. Under drought conditions, the Osckx2 mutant conserved more water and demonstrated improved water-saving traits. Through reduced transpiration, Osckx2 mutants showed an improved survival response than the wild type to unset dehydration stress. Further, Osckx2 maintained chloroplast and membrane integrity and showed significantly improved photosynthetic function under drought conditions through enhanced antioxidant protection systems. The OsCKX2 function negatively affects panicle grain number and drought tolerance, with no discernible impact in response to salinity. The finding suggests the utility of the beneficial Osckx2 allele in breeding to develop climate-resilient, high-yielding cultivars for future food security.


Asunto(s)
Citocininas , Resistencia a la Sequía , Oryza , Oxidorreductasas , Proteínas de Plantas , Citocininas/metabolismo , Resistencia a la Sequía/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Oryza/enzimología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética
19.
J Org Chem ; 89(16): 11446-11454, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39113180

RESUMEN

An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.


Asunto(s)
Biocatálisis , Nitrilos , Oxidorreductasas , Pirazoles , Pirimidinas , Nitrilos/química , Nitrilos/metabolismo , Pirimidinas/química , Pirimidinas/biosíntesis , Pirimidinas/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Pirazoles/química , Pirazoles/metabolismo , Iminas/química , Iminas/metabolismo , Estructura Molecular , Hidrazinas/química , Ingeniería de Proteínas
20.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063103

RESUMEN

Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction, we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. A wildtype (WT) and a mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for the in vitro stress response and in vivo survival in macrophages and mice models of infection. The study demonstrates that the deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice; however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag-/- mice at 4 weeks post-infection. Moreover, Rag-/- mice infected with RvΔ0687 survived longer compared to those infected with the WT Mtb strain. Additionally, we observed a significant reduction in the bacterial burden in the spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to those infected with complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.


Asunto(s)
Proteínas Bacterianas , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/genética , Ratones , Macrófagos/microbiología , Macrófagos/metabolismo , Tuberculosis/microbiología , Tuberculosis/patología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estrés Oxidativo , Humanos , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Viabilidad Microbiana , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Estrés Nitrosativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA