Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.713
Filtrar
1.
Food Chem ; 462: 140992, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208723

RESUMEN

The development and manufacture of high-quality starch are a new research focus in food science. Here, transglutaminase was used in the wet processing of glutinous rice flour to prepare customized sweet dumplings. Transglutaminase (0.2 %) lowered protein loss in wet processing and reduced the crystallinity and viscosity of glutinous rice flour. Moreover, it lowered the cracking and cooking loss of sweet dumplings after freeze-thaw cycles, and produced sweet dumplings with reduced hardness and viscosity, making them more suitable for people with swallowing difficulties. Additionally, in sweet dumplings with 0.2 % transglutaminase, the encapsulation of starch granules by the protein slowed down the digestion and reduced the final hydrolysis rate, which are beneficial for people with weight and glycemic control issues. In conclusion, this study contributes to the production of tasty, customized sweet dumplings.


Asunto(s)
Digestión , Harina , Oryza , Almidón , Transglutaminasas , Oryza/química , Oryza/metabolismo , Transglutaminasas/metabolismo , Transglutaminasas/química , Harina/análisis , Almidón/química , Almidón/metabolismo , Manipulación de Alimentos , Humanos , Viscosidad , Culinaria , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Biocatálisis
2.
Food Chem ; 462: 140923, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208740

RESUMEN

Cadmium (Cd) in rice is a significant concern for its quality and safety. Currently, there is a crucial need to develop cost-effective and efficient ways to remove Cd or re-utilize Cd-contaminated rice. The food additive sodium erythorbate is produced via 2-ketogluconic acid (2KGA) fermentation by Pseudomonas plecoglossicida and lactonization using starch-rich raw materials, such as rice. We aimed to determine whether cadmium-contaminated rice can be used to produce sodium erythorbate. To achieve this aim, the migration of cadmium during the production of sodium erythorbate from Cd-contaminated rice was studied. Five rice varieties with different Cd contents from 0.10 to 0.68 mg/kg were used as raw materials. The results indicated the presence of Cd in rice and CaCO3 did not have a notable impact on the fermentation performance of 2KGA. The acidification of 2KGA fermentation broth, the addition of K4Fe(CN)6·3H2O and ZnSO4, and 2KGA purification using cation exchange effectively removed >98% of the Cd in the fermentation broth, but the 2KGA yield remained high at approximately 94%. The sodium erythorbate synthesized from Cd-contaminated rice was of high quality and free from Cd, meeting the requirements of the Chinese National Standard, GB 1886.28-2016. The study provided a safe and effective strategy for comprehensively utilizing Cd-contaminated rice to produce high value-added food additive.


Asunto(s)
Cadmio , Fermentación , Aditivos Alimentarios , Contaminación de Alimentos , Oryza , Oryza/química , Oryza/metabolismo , Oryza/microbiología , Cadmio/metabolismo , Cadmio/análisis , Contaminación de Alimentos/análisis , Aditivos Alimentarios/análisis , Aditivos Alimentarios/metabolismo , Pseudomonas/metabolismo , Azúcares Ácidos/metabolismo , Azúcares Ácidos/química , Azúcares Ácidos/análisis
3.
Food Chem ; 462: 140987, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217748

RESUMEN

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Asunto(s)
Culinaria , Congelación , Germinación , Campos Magnéticos , Oryza , Oryza/química , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Harina/análisis , Almidón/química , Almidón/metabolismo , Agua/química , Dureza , Manipulación de Alimentos , Semillas/química , Semillas/crecimiento & desarrollo
4.
Food Chem ; 462: 140847, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226647

RESUMEN

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Asunto(s)
Culinaria , Fibras de la Dieta , Oryza , Semillas , Oryza/química , Fibras de la Dieta/análisis , Semillas/química , Valor Nutritivo , Gusto , Humanos , Manipulación de Alimentos , Almidón/química , Amilosa/química , Amilosa/análisis
5.
J Environ Sci (China) ; 148: 553-566, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095188

RESUMEN

Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.


Asunto(s)
Cadmio , Minerales , Oryza , Contaminantes del Suelo , Cadmio/química , Minerales/química , Oryza/química , Contaminantes del Suelo/química , Adsorción , Sustancias Húmicas/análisis , Caolín/química
6.
J Environ Sci (China) ; 148: 683-690, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095199

RESUMEN

Mercury (Hg), especially methylmercury (MeHg), accumulation in rice grain due to rice paddy possessing conditions conducive to Hg methylation has led to human Hg exposure through consumption of rice-based daily meals. In addition to being a food staple, rice is widely used as a raw material to produce a vast variety of processed food products. Little is known about Hg levels in snacking rice-food products and potential Hg exposure from consumption of them, besides previous studies on infant rice cereals. Aiming to provide complementary information for a more complete assessment on Hg exposure risk originated from Hg-containing rice, this study determined total Hg (THg) and MeHg levels in 195 rice-containing and rice-free processed food products covering all major types of snack foods marketed in China and the estimated daily intake (EDI) of dietary Hg from the consumption of these foods. The results clearly showed THg and MeHg contents in rice-containing foods were significantly higher than rice-free products, suggesting the transfer of Hg and MeHg from the rice to the end products, even after manufacturing processes. Moreover, significant positive correlations were observed between THg, MeHg, or MeHg/THg ratio and rice content for samples containing multiple grains as ingredients, further indicating the deciding role of rice for Hg levels in the end food products. Although the EDI of THg and MeHg via rice-based food products were relatively low compared to the reference dose, it should be considered these snacking food products would contribute additive Hg intake outside of the daily regular meals.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos , Mercurio , Compuestos de Metilmercurio , Oryza , Oryza/química , Mercurio/análisis , Contaminación de Alimentos/análisis , China , Compuestos de Metilmercurio/análisis , Exposición Dietética/análisis , Exposición Dietética/estadística & datos numéricos , Humanos , Medición de Riesgo
7.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003078

RESUMEN

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Asunto(s)
Arsénico , Cadmio , Carbón Orgánico , Magnesio , Oryza , Contaminantes del Suelo , Suelo , Oryza/química , Cadmio/análisis , Cadmio/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Magnesio/química , Hierro/química , Restauración y Remediación Ambiental/métodos
8.
Carbohydr Polym ; 346: 122604, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245490

RESUMEN

This study presents a novel biotechnological approach for creating water vapor-resistant cryogels with improved integrity. Rice straw cellulose was transformed into nanofibrils through TEMPO-mediated oxidation and high-pressure homogenization. The resulting cryogels remained firm even when immersed in aqueous media, whose pores were used by live cell to deposit polyhydroxyalkanoate (PHA) particles inside them. This novel method allowed the compatibilization of PHA within the cellulosic fibers. As a consequence, the water sorption capacity was decreased by up to 6 times having just 4 % of PHA compared to untreated cryogels, preserving the cryogel density and elasticity. Additionally, this technique can be adapted to various bacterial strains and PHA types, allowing for further optimization. It was demonstrated that the amount and type of PHA (medium chain length and small chain length-PHA) used affects the properties for the cryogels, especially the water vapor sorption behavior and the compressive strength. Compared to traditional coating methods, this cell-mediated approach not only allows to distribute PHA on the surface of the cryogel, but also ensures polymer penetration throughout the cryogel due to bacterial self-movement. This study opens doors for creating cryogels with tunable water vapor sorption and other additional functionalities through the use of specialized PHA variants.


Asunto(s)
Celulosa , Criogeles , Oryza , Polihidroxialcanoatos , Polihidroxialcanoatos/química , Criogeles/química , Oryza/química , Celulosa/química , Agua/química , Vapor , Óxidos N-Cíclicos/química , Fuerza Compresiva
9.
Food Res Int ; 194: 114887, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232521

RESUMEN

White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.


Asunto(s)
Culinaria , Digestión , Oryza , Almidón , Oryza/química , Almidón/química , Almidón/metabolismo , Amilopectina/química , Humanos , Amilosa/química , Relación Estructura-Actividad , Estructura Molecular , Gusto
10.
Food Res Int ; 194: 114906, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232530

RESUMEN

Due to its high polyphenol content, black rice plays a significant role in good nutrition; however, these antioxidant compounds are affected by heat treatments required for the rice consumption. The aim of this work was to investigate how cooking affects the composition of Artemide black rice, comparing innovative methods, such as sous vide, with traditional domestic techniques (risotto and pilaf). Proteins and ashes were not affected by cooking, except for pilaf rice, where a 42 % ashes decrease was observed; fiber content increased after all cooking methods, reaching a 29 % increase in the risotto. Antioxidant activity, total polyphenols, anthocyanins and proanthocyanidins were reduced on average of 40 %, 34 %, 43 % and 39 %, respectively. Individual anthocyanins decreased, while phenolic acids and other flavonoids presented different behaviours, also depending if considered in their free or bound form. Cyanidin-3-O-glucoside was reduced up to 56 % in the sous vide cooked rice at 99 °C, and only by 45 % and 37 % in the risotto and sous vide cooked rice at 89 °C, respectively. Traditional risotto preparation and the innovative sous vide cooking at 89 °C also maintained the highest antioxidant polyphenols content, saving 63 % of the antioxidant activity in respect to the raw black rice. Concluding, these last techniques can be suggested for a better preservation of bioactive compounds.


Asunto(s)
Antocianinas , Antioxidantes , Culinaria , Oryza , Polifenoles , Oryza/química , Culinaria/métodos , Antioxidantes/análisis , Antocianinas/análisis , Polifenoles/análisis , Fibras de la Dieta/análisis , Calor , Proantocianidinas/análisis , Glucósidos/análisis , Hidroxibenzoatos/análisis , Valor Nutritivo
11.
Carbohydr Res ; 544: 109248, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222593

RESUMEN

This study aimed at optimizing process protocols for development of low glycemic index (GI) rice flour (LGIRF) by employing enzymatic hydrolysis method using central composite rotatable design (CCRD). LGIRF was evaluated for pasting, farinographic, spectroscopic and microbiological attributes. Independent variables for optimization included concentrations of α-amylase (0.02-0.12 %), glucoamylase (0.02-0.24 %), as well as the incubation temperature (55-80°C). Resistant starch (RS), glycemic index (GI) and glycemic load (GL) were investigated as response variables. The optimum conditions for development of LGIRF with better quality were- α-amylase concentration of 0.040 %, glucoamylase concentration of 0.070 % and an incubation temperature of 60 °C. The results of mineral analysis revealed significantly (p < 0.05) lower levels of boron, potassium, zinc, phosphorus, magnesium, and manganese in LGIRF, while iron and copper were significantly higher. The viscosity profile as evident from pasting profile and farinographic characteristics of LGIRF were significantly (p < 0.05) lower than native rice flour. 1H NMR and 13C NMR spectroscopic studies showed an increase in flexible starch segments and a decrease in amorphous portion of starch LGIRF, along with chemical shift alterations in carbons 1 and 4. Free fatty acids and total plate count were significantly (p < 0.05) higher in LGIRF although was within limits.


Asunto(s)
Harina , Glucano 1,4-alfa-Glucosidasa , Índice Glucémico , Oryza , Reología , alfa-Amilasas , Oryza/química , Hidrólisis , Harina/análisis , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucano 1,4-alfa-Glucosidasa/química , Almidón/química , Almidón/metabolismo
12.
Food Chem ; 461: 140831, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39226795

RESUMEN

Eight sample digestion procedures were compared to determine 41 elements in rice samples by ICP-MS and CV-AFS. Analytical methods were evaluated using certified rice flour reference material (NIST 1568b) and recovery experiments. The microwave-assisted digestion of 0.5 g rice sample and reagent mixture of 2 mL HNO3, 0.5 mL H2O2, and 0.5 mL deionized water yielded the best recovery for all elements ranging from 90 to 120% at three different levels, bias% within 10%, and precision (coefficient of variation percent, CV% intra- and inter-day) below 15%. The best analytical method was applied to the elemental determination in nine types of rice available on the Italian market. Daily or weekly rice consumption meets the nutritional and safety requirements of EFSA and WHO. The present study allows extensive and detailed knowledge of the content of essential and non-essential/toxic elements in different types of rice produced or packaged in Italy.


Asunto(s)
Espectrometría de Masas , Oryza , Oryza/química , Italia , Oligoelementos/análisis , Microondas , Humanos
13.
Luminescence ; 39(9): e4884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258707

RESUMEN

In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.


Asunto(s)
Disulfuros , Tecnología Química Verde , Molibdeno , Oryza , Tamaño de la Partícula , Molibdeno/química , Disulfuros/química , Oryza/química , Hierro/química , Propiedades de Superficie
14.
Int J Biol Macromol ; 277(Pt 3): 134332, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089563

RESUMEN

It is becoming increasingly important to have starch sources with different physicochemical properties to meet the needs of new applications in food, packaging, bioplastic, and pharmaceutical industries. The first part of this study dealt with the isolation of starch from culturally, geographically, nutritionally esteemed, and high-yielding Assam Joha rice. Fine and uniform particle size (6.3 ± 0.09 µm), high amylose content (28 ± 1.03 %), swelling behavior, viscoelastic rheological behavior, moderate gelatinization temperature (66 ± 1.7 °C), thermostable nature, type A crystallographic pattern with high (45 ± 3.3 %) crystallinity, and suitable microbial quality make the Joha rice derived starch physico-chemically and functionally suitable for potential applications in diverse domains. The latter part of the study focuses on one of the applications of derived starch as a suitable matrix for intelligent packaging films with the incorporation of betanin-enriched beetroot extract (BRE) as a bio-based pH sensor. The addition of 1.0 % w/v BRE to the starch film (starch-BRE III) significantly increased its functionality by reducing UV-visible light transmittance and water vapor permeability, along with enhancing flexibility and hydrophobicity due to intermolecular bonding between BRE and the starch film matrix. Moreover, starch-BRE films with different BRE concentrations were successfully used to monitor the real-time freshness of white meat (chicken and fish) and Indian cottage cheese samples. Overall, the results indicated that starch-BRE III has great potential as an intelligent packaging material for monitoring food freshness.


Asunto(s)
Beta vulgaris , Embalaje de Alimentos , Oryza , Extractos Vegetales , Almidón , Almidón/química , Embalaje de Alimentos/métodos , Beta vulgaris/química , Oryza/química , Extractos Vegetales/química , Amilosa/química , Amilosa/análisis , Permeabilidad , Reología , Concentración de Iones de Hidrógeno , Temperatura
15.
Food Chem ; 460(Pt 2): 140677, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102764

RESUMEN

Germination represents a vital bioprocess characterized by numerous biochemical transformations that significantly influence the nutritional characteristics of rice. The mobilization of starch and lipids during germination plays a pivotal role in altering the dietary profile of rice, thus potentially addressing the nutritional requirements of populations heavily reliant on rice as a staple food. To explore this potential, a comprehensive analysis encompassing lipidomics and starch composition was conducted on a diverse collection of pigmented rice sprouts. High-resolution mass spectrometry unveiled substantial shifts in the lipidome of pigmented rice sprouts, showcasing a notable enrichment in carotenoids and unsaturated triglycerides, with potential human health benefits. Notably, purple rice sprouts exhibited heightened levels of alpha- and beta-carotene. Analysis of starch composition revealed slight changes in amylose and amylopectin content; however, a consistent increase in digestible carbohydrates was observed across all rice varieties. Germination also led to a reduction in resistant starch content, with purple rice sprouts demonstrating a pronounced two-fold decrease (p < 0.05). These changes were corroborated by a 1.33% decrease in gelatinization enthalpy and a 0.40% reduction in the melting of the amylose-lipid complex. Furthermore, pasting property analysis indicated a substantial 42% decrease in the complexation index post-germination. We posit that the insights garnered from this study hold significant promise for the development of novel products enriched with health-promoting lipids and characterized by unique flour properties.


Asunto(s)
Germinación , Lipidómica , Lípidos , Oryza , Almidón , Oryza/química , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Almidón/metabolismo , Almidón/química , Lípidos/química , Lípidos/análisis , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo
16.
Bioresour Technol ; 410: 131310, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163948

RESUMEN

CaO modified with acetic acid solution or sodium hydroxide (H-CaO/OH-CaO) was used to explore the relationship between the physical and chemical properties of CaO and the components of bio-oil during the pyrolysis of rice straw (RS) and model compounds via experiment and density functional theory(DFT) simulation. The results showed that the modification changed the properties of CaO, and thus the catalytic performance on production of bio-oil components. H-CaO with the larger number of strong basic sites (1.10 âˆ¼ 2 times than commercial CaO) and the longer Ca-O bond length showed the better selectivity and performance on formation of ketones (the maximum relative content in bio-oil reached 43 %). The conversion pathway of cellulose/hemicellulose was changed by H-CaO, which promoted the formation of ketones. The easier combining of H-CaO with the pyrolysis primary products due to the longer Ca-O bond was the key to its better performance.


Asunto(s)
Biomasa , Compuestos de Calcio , Teoría Funcional de la Densidad , Cetonas , Óxidos , Pirólisis , Cetonas/química , Óxidos/química , Compuestos de Calcio/química , Catálisis , Oryza/química , Biocombustibles , Simulación por Computador
17.
J Agric Food Chem ; 72(35): 19312-19322, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166886

RESUMEN

This study investigated the uptake pathways, acropetal translocation, subcellular distribution, and biotransformation of OPEs by rice (Oryza sativa L.) after Cu exposure. The symplastic pathway was noted as the major pathway for the uptake of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) by rice roots. Cu exposure enhanced the accumulation of tri-OPEs in rice roots, and such enhancement was positively correlated with Cu concentrations, attributing to the Cu-induced root damage. The hydrophilic Cl-OPEs in the cell-soluble fraction of rice tissues were enhanced after Cu exposure, while the subcellular distributions of alkyl- and aryl-OPEs were not affected by Cu exposure. Significantly higher biotransformation rates of tri-OPEs to di-OPEs occurred in leaves, followed by those in stems and roots. Our study reveals the mechanisms associated with the uptake, translocation, and biotransformation of various OPEs in rice after Cu exposure, which provides new insights regarding the phytoremediation of soils cocontaminated with heavy metal and OPEs.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Cobre , Organofosfatos , Oryza , Raíces de Plantas , Contaminantes del Suelo , Oryza/metabolismo , Oryza/química , Oryza/efectos de los fármacos , Cobre/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Organofosfatos/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Ésteres/metabolismo , Ésteres/química
18.
Nutrients ; 16(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203806

RESUMEN

OBJECTIVES: This study aimed to assess postprandial blood glucose response (PBGR), relative glycemic response (RGR) and insulin response when 25 g available carbohydrates (AC) is replaced with cooked lentils in the formulation of muffins, chilies and soups. METHODS: In randomized, crossover studies, healthy adults consumed foods containing 25 g AC from green lentils, red lentils or a control (wheat muffin, n = 24; rice chili, n = 24; potato soup, n = 20). Blood collected at fasting and at 15, 30, 45, 60, 90 and 120 min was analyzed to derive the incremental area under the response curve (iAUC) for glucose, insulin, RGR and maximum concentration (CMAX). Treatment effects were assessed with repeated measures ANOVA. RESULTS: A replacement of 25 g AC with green lentils significantly decreased glucose iAUC compared to chili and soup (p < 0.0001), but not muffin (p = 0.07) controls, while also eliciting a significantly lower insulin iAUC for all three foods (muffin p = 0.03; chili p = 0.0002; soup p < 0.0001). Red lentil foods significantly decreased glucose iAUC (muffin p = 0.02; chili p < 0.0001; soup p < 0.0001) compared to controls, with a significantly lower insulin iAUC for chili and soup (p < 0.0001) but not muffins (p = 0.09). The RGR for muffins, chilies and soups was 88, 58 and 61%, respectively, for green lentils, and 84, 48 and 49%, respectively, for red lentils. CONCLUSIONS: PBGR, insulin and RGR are decreased when lentils are incorporated into food products, providing credible evidence to promote carbohydrate replacement with lentil-based foods.


Asunto(s)
Glucemia , Estudios Cruzados , Índice Glucémico , Insulina , Lens (Planta) , Periodo Posprandial , Humanos , Glucemia/metabolismo , Lens (Planta)/química , Adulto , Insulina/sangre , Masculino , Femenino , Adulto Joven , Carbohidratos de la Dieta/administración & dosificación , Ingredientes Alimentarios/análisis , Persona de Mediana Edad , Voluntarios Sanos , Oryza/química
19.
Sci Rep ; 14(1): 18433, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117723

RESUMEN

Electrochemical detection is favorable for the rapid and sensitive determination of heavy metal cadmium. However, the detection sensitivity needs to be further improved, and a portable, low-cost device is needed for on-site detection. Herein, an in-situ bismuth modified pre-anodized screen-printed carbon electrode (SPCE) was developed for Cd2+ determination by square wave anodic stripping voltammetry (SWASV). The in-situ bismuth modification enhances the enrichment of Cd2+, and together with pre-anodization improve the electron transfer rate of electrode, thus enhancing the detection sensitivity. The electrode modification method combines pre-anodization and in-situ bismuth deposition, which is very easy and effective. Furthermore, a self-made PSoC Stat potentiostat coupled with a stirring device was fabricated for portable and low-cost electrochemical detection. After comprehensive optimization, the developed method can reach a testing time of 3 min, a detection limit of 3.55 µg/L, a linear range of 5-100 µg/L, and a recovery rate of 91.7-107.1% in water and rice samples for Cd2+ determination. Therefore, our method holds great promise for the rapid, sensitive and on-site determination of Cd2+ in food samples.


Asunto(s)
Bismuto , Cadmio , Técnicas Electroquímicas , Electrodos , Oryza , Cadmio/análisis , Oryza/química , Bismuto/química , Bismuto/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Agua/química , Agua/análisis , Contaminantes Químicos del Agua/análisis , Límite de Detección , Contaminación de Alimentos/análisis
20.
J Chromatogr A ; 1733: 465277, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154496

RESUMEN

Food safety is an important issue to protect humane health and improve the life quality. Hence, analysis of the possible contaminants in food samples is essential. A rapid and efficient vortexed-assisted dispersive µ-solid-phase extraction coupled with gas chromatography-mass spectrometry was proposed for simultaneous separation/preconcentration and determination of five commonly used organophosphorus pesticides. Reduced graphene oxide decorated NiCo2(OH)6 nanoflowers as a novel nanostructure was synthetized and introduced for separation of the target pesticides from the wheat flour, rice flour, and baby food cereal samples. The characterization of the nanoflowers was accomplished by SEM-EDX, XRD, and FT-IR techniques. The main factors including pH, the amount of nanoflower, the volume of sample solution, salt concentration (ionic strength), desorption conditions (i.e. desorption solvent type and volume, and desorption time) on the pesticides extraction efficiencies were inquired using matrixed match method. Applying the optimum conditions, the linearity of 0.100-500.000 µg kg-1, LODs and LOQs in the range of 0.03-0.04 µg kg-1 and 0.1 µg kg-1 for the studied food samples were obtained. The repeatability (intra-day precision (n = 5)) of ≤ 2.0 % and reproducibility (inter-day precision, days = 5, n = 3) of ≤3.1 % and were appraise at three concentration levels (10, 50 and 100 µg kg-1 of each analyte). High relative recoveries of 90.0-99.3 % ascertained high potential of the presented method for complex matrix analysis.


Asunto(s)
Grano Comestible , Harina , Grafito , Compuestos Organofosforados , Oryza , Extracción en Fase Sólida , Grafito/química , Oryza/química , Harina/análisis , Compuestos Organofosforados/análisis , Compuestos Organofosforados/aislamiento & purificación , Compuestos Organofosforados/química , Grano Comestible/química , Extracción en Fase Sólida/métodos , Alimentos Infantiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Límite de Detección , Contaminación de Alimentos/análisis , Triticum/química , Plaguicidas/análisis , Plaguicidas/aislamiento & purificación , Plaguicidas/química , Nanoestructuras/química , Microextracción en Fase Sólida/métodos , Níquel/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA