Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2322360121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074288

RESUMEN

Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.


Asunto(s)
Pollos , Compensación de Dosificación (Genética) , Ornitorrinco , Cromosomas Sexuales , Animales , Pollos/genética , Cromosomas Sexuales/genética , Masculino , Femenino , Ornitorrinco/genética , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Open Biol ; 14(7): 240071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955222

RESUMEN

The enzymatic breakdown and regulation of food passage through the vertebrate antral stomach and pyloric sphincter (antropyloric region) is a trait conserved over 450 million years. Development of the structures involved is underpinned by a highly conserved signalling pathway involving the hedgehog, bone morphogenetic protein and Wingless/Int-1 (Wnt) protein families. Monotremes are one of the few vertebrate lineages where acid-based digestion has been lost, and this is consistent with the lack of genes for hydrochloric acid secretion and gastric enzymes in the genomes of the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) . Furthermore, these species feature unique gastric phenotypes, both with truncated and aglandular antral stomachs and the platypus with no pylorus. Here, we explore the genetic underpinning of monotreme gastric phenotypes, investigating genes important in antropyloric development using the newest monotreme genomes (mOrnAna1.pri.v4 and mTacAcu1) together with RNA-seq data. We found that the pathway constituents are generally conserved, but surprisingly, NK3 homeobox 2 (Nkx3.2) was pseudogenized in both platypus and echidna. We speculate that the unique sequence evolution of Grem1 and Bmp4 sequences in the echidna lineage may correlate with their pyloric-like restriction and that the convergent loss of gastric acid and stomach size genotypes and phenotypes in teleost and monotreme lineages may be a result of eco-evolutionary dynamics. These findings reflect the effects of gene loss on phenotypic evolution and further elucidate the genetic control of monotreme stomach anatomy and physiology.


Asunto(s)
Estómago , Animales , Estómago/anatomía & histología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ornitorrinco/genética , Filogenia , Evolución Molecular
3.
Commun Biol ; 7(1): 408, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570609

RESUMEN

The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.


Asunto(s)
Ornitorrinco , Tachyglossidae , Animales , Filogenia , Ornitorrinco/genética , Tachyglossidae/genética , Estómago , Peces/genética
4.
Sci Rep ; 14(1): 1437, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228724

RESUMEN

The function of the skin as a barrier against the environment depends on the differentiation of epidermal keratinocytes into highly resilient corneocytes that form the outermost skin layer. Many genes encoding structural components of corneocytes are clustered in the epidermal differentiation complex (EDC), which has been described in placental and marsupial mammals as well as non-mammalian tetrapods. Here, we analyzed the genomes of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) to determine the gene composition of the EDC in the basal clade of mammals, the monotremes. We report that mammal-specific subfamilies of EDC genes encoding small proline-rich proteins (SPRRs) and late cornified envelope proteins as well as single-copy EDC genes such as involucrin are conserved in monotremes, suggesting that they have originated in stem mammals. Monotremes have at least one gene homologous to the group of filaggrin (FLG), FLG2 and hornerin (HRNR) in placental mammals, but no clear one-to-one pairwise ortholog of either FLG, FLG2 or HRNR. Caspase-14, a keratinocyte differentiation-associated protease implicated in the processing of filaggrin, is encoded by at least 3 gene copies in the echidna. Our results reveal evolutionarily conserved and clade-specific features of the genetic regulation of epidermal differentiation in monotremes.


Asunto(s)
Monotremata , Ornitorrinco , Tachyglossidae , Embarazo , Animales , Femenino , Tachyglossidae/fisiología , Proteínas Filagrina , Placenta , Ornitorrinco/genética , Mamíferos/genética , Genómica
5.
Immunogenetics ; 75(6): 507-515, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747540

RESUMEN

T cells are a primary component of the vertebrate adaptive immune system. There are three mammalian T cell lineages based on their T cell receptors (TCR). The αß T cells and γδ T cells are ancient and found broadly in vertebrates. The more recently discovered γµ T cells are uniquely mammalian and only found in marsupials and monotremes. In this study, we compare the TCRµ locus (TRM) across the genomes of two marsupials, the gray short-tailed opossum and Tasmanian devil, and one monotreme, the platypus. These analyses revealed lineage-specific duplications, common to all non-eutherian mammals described. There is conserved synteny in the TRM loci of both marsupials but not in the monotreme. Our results are consistent with an ancestral cluster organization which was present in the last common mammalian ancestor which underwent lineage-specific duplications and divergence among the non-eutherian mammals.


Asunto(s)
Marsupiales , Ornitorrinco , Animales , Marsupiales/genética , Filogenia , Evolución Molecular , Receptores de Antígenos de Linfocitos T/genética , Mamíferos , Genómica , Ornitorrinco/genética
6.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37062963

RESUMEN

Independently acquired envelope (env) genes from endogenous retroviruses have contributed to the placental trophoblast cell-cell fusion in therian mammals. Egg-laying mammals (monotremes) are an important sister clade for understanding mammalian placental evolution, but the env genes in their genomes have yet to be investigated. Here, env-derived open reading frames (env-ORFs) encoding more than 400 amino acid lengths were searched in the genomes of two monotremes: platypus and echidna. Only two env-ORFs were present in the platypus genome, whereas 121 env-ORFs were found in the echidna genome. The echidna env-ORFs were phylogenetically classified into seven groups named env-Tac1 to -Tac7. Among them, the env-Tac1 group contained only a single gene, and its amino acid sequence showed high similarity to those of the RD114/simian type D retroviruses. Using the pseudotyped virus assay, we demonstrated that the Env-Tac1 protein utilizes echidna sodium-dependent neutral amino acid transporter type 1 and 2 (ASCT1 and ASCT2) as entry receptors. Moreover, the Env-Tac1 protein caused cell-cell fusion in human 293T cells depending on the expression of ASCT1 and ASCT2. These results illustrate that fusogenic env genes are not restricted to placental mammals, providing insights into the evolution of retroviral genes and the placenta.


Asunto(s)
Retrovirus Endógenos , Ornitorrinco , Tachyglossidae , Animales , Embarazo , Femenino , Humanos , Genes env , Placenta , Ornitorrinco/genética , Tachyglossidae/genética , Productos del Gen env/genética , Mamíferos/genética
7.
Commun Biol ; 5(1): 1127, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329312

RESUMEN

The evolutionarily unique platypus (Ornithorhynchus anatinus) has experienced major declines and extinctions from a range of historical and recent interacting human-mediated threats. Although spending most of their time in the water, platypuses can move over land. Nevertheless, uncertainties remain whether dams are barriers to movement, thus limiting gene flow and dispersal, essential to evolution and ecology. Here we examined disruption of gene flow between platypus groups below and above five major dams, matched to four adjacent rivers without major dams. Genetic differentiation (FST) across dams was 4- to 20-fold higher than along similar stretches of adjacent undammed rivers; FST across dams was similar to differentiation between adjacent river systems. This indicates that major dams represent major barriers for platypus movements. Furthermore, FST between groups was correlated with the year in which the dam was built, increasing by 0.011 every generation, reflecting the effects of these barriers on platypus genetics. This study provides evidence of gene flow restriction, which jeopardises the long-term viability of platypus populations when groups are fragmented by major dams. Mitigation strategies, such as building of by-pass structures and translocation between upstream and downstream of the dam, should be considered in conservation and management planning.


Asunto(s)
Ornitorrinco , Animales , Humanos , Ornitorrinco/genética , Ríos , Ecología , Movimiento
8.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35652727

RESUMEN

Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to ß-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect ß-glucosides and other substances might be shared and ancestral among mammals.


Asunto(s)
Ornitorrinco , Tachyglossidae , Animales , Euterios/genética , Femenino , Mamíferos/genética , Placenta , Ornitorrinco/genética , Embarazo , Gusto
9.
Genes (Basel) ; 12(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34946813

RESUMEN

Microproteins (<100 amino acids) are receiving increasing recognition as important participants in numerous biological processes, but their evolutionary dynamics are poorly understood. SPAAR is a recently discovered microprotein that regulates muscle regeneration and angiogenesis through interactions with conserved signaling pathways. Interestingly, SPAAR does not belong to any known protein family and has known homologs exclusively among placental mammals. This lack of distant homology could be caused by challenges in homology detection of short sequences, or it could indicate a recent de novo emergence from a noncoding sequence. By integrating syntenic alignments and homology searches, we identify SPAAR orthologs in marsupials and monotremes, establishing that SPAAR has existed at least since the emergence of mammals. SPAAR shows substantial primary sequence divergence but retains a conserved protein structure. In primates, we infer two independent evolutionary events leading to the de novo origination of 5' elongated isoforms of SPAAR from a noncoding sequence and find evidence of adaptive evolution in this extended region. Thus, SPAAR may be of ancient origin, but it appears to be experiencing continual evolutionary innovation in mammals.


Asunto(s)
Péptidos/genética , ARN Largo no Codificante/genética , Animales , Evolución Molecular , Femenino , Humanos , Mamíferos/genética , Ratones , Zarigüeyas/genética , Filogenia , Placenta/metabolismo , Ornitorrinco/genética , Embarazo , Primates/genética
10.
Sex Dev ; 15(4): 262-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33915542

RESUMEN

Monotremes diverged from therian mammal ancestors approximately 184 million years ago and have a number of novel reproductive characteristics. One in particular is their penile morphology. There are differences between echidna and platypus phalluses, but both are somewhat similar in structure to the reptilian phallus. The echidna penis consists of 4 rosette glans, each of which contains a termination of the quadrifurcate urethra, but it appears that only 2 of the 4 glans become erect at any one time. Despite this, only a few historical references describe the structure of the echidna penis and none provides an explanation for the mechanisms of unilateral ejaculation. This study confirmed that the echidna penis contains many of the same overall structures and morphology as other mammalian penises and a number of features homologous with reptiles. The corpus cavernosum is well supplied with blood, extends up to the base of the glans penis and is primarily responsible for erection. However, the echidna possesses 2 distinct corpora spongiosa separated by a septum, each of which surround the urethra only distal to the initial urethral bifurcation in the glans penis. Together with the bifurcation of the main penile artery, this provides a mechanism by which blood flow could be directed to only one corpus spongiosum at a time to maintain an open urethra that supplies 2 of the 4 glans to facilitate unilateral ejaculation.


Asunto(s)
Ornitorrinco , Tachyglossidae , Animales , Genitales Masculinos , Masculino , Mamíferos , Pene/anatomía & histología , Ornitorrinco/anatomía & histología , Ornitorrinco/genética
12.
Nature ; 592(7856): 756-762, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33408411

RESUMEN

Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.


Asunto(s)
Evolución Biológica , Genoma , Ornitorrinco/genética , Tachyglossidae/genética , Animales , Femenino , Masculino , Mamíferos/genética , Filogenia , Cromosomas Sexuales/genética
13.
Nature ; 588(7839): 642-647, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177713

RESUMEN

Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer-potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.


Asunto(s)
Evolución Molecular , Mamíferos/genética , Biosíntesis de Proteínas , Transcriptoma/genética , Animales , Encéfalo/metabolismo , Pollos/genética , Femenino , Genes Ligados a X/genética , Humanos , Hígado/metabolismo , Macaca/genética , Masculino , Ratones , Zarigüeyas/genética , Especificidad de Órganos/genética , Ornitorrinco/genética , Biosíntesis de Proteínas/genética , RNA-Seq , Ribosomas/metabolismo , Cromosomas Sexuales/genética , Especificidad de la Especie , Espermatogénesis/genética , Testículo/metabolismo , Regulación hacia Arriba
14.
Biol Reprod ; 102(6): 1261-1269, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32179898

RESUMEN

Aromatase (P450arom, CYP19A1) is the terminal enzyme in the synthesis of the steroid hormone family of estrogens. Not surprisingly, this enzyme has structural similarities between the limited number of species studied thus far. This study examined the structure of aromatases from four diverse Australian species including a marsupial (tammar wallaby; Macropus eugenii), monotreme (platypus; Ornithorhynchus anatinus), ratite (emu; Dromaius novaehollandiae) and lizard (bearded dragon; Pogona vitticeps). We successfully built homology models for each species, using the only crystallographically determined structure available, human aromatase. The amino acid sequences showed high amino acid sequence identity to the human aromatase: wallaby 81%, platypus 73%, emu 75% and bearded dragon at 74%. The overall structure was highly conserved among the five species, although there were non-secondary structures (loops and bends) that were variable and flexible that may result in some differences in catalytic activity. At the N-terminal regions, there were deletions and variations that suggest that functional distinctions may be found. We found that the active sites of all these proteins were identical, except for a slight variation in the emu. The electrostatic potential across the surfaces of these aromatases highlighted likely variations to the protein-protein interactions of these enzymes with both redox partner cytochrome P450 reductase and possibly homodimerization in the case of the platypus, which has been postulated for the human aromatase enzyme. Given the high natural selection pressures on reproductive strategies, the relatively high degree of conservation of aromatase sequence and structure across species suggests that there is biochemically very little scope for changes to have evolved without the loss of enzyme activity.


Asunto(s)
Aromatasa/metabolismo , Lagartos/metabolismo , Marsupiales/metabolismo , Paleognatos/metabolismo , Ornitorrinco/metabolismo , Secuencia de Aminoácidos , Animales , Aromatasa/genética , Regulación Enzimológica de la Expresión Génica , Genoma , Humanos , Lagartos/genética , Marsupiales/genética , Modelos Moleculares , Paleognatos/genética , Ornitorrinco/genética , Conformación Proteica , Especificidad de la Especie
15.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906570

RESUMEN

Mast cells (MCs) are inflammatory cells primarily found in tissues in close contact with the external environment, such as the skin and the intestinal mucosa. They store large amounts of active components in cytoplasmic granules, ready for rapid release. The major protein content of these granules is proteases, which can account for up to 35 % of the total cellular protein. Depending on their primary cleavage specificity, they can generally be subdivided into chymases and tryptases. Here we present the extended cleavage specificities of two such proteases from the platypus. Both of them show an extended chymotrypsin-like specificity almost identical to other mammalian MC chymases. This suggests that MC chymotryptic enzymes have been conserved, both in structure and extended cleavage specificity, for more than 200 million years, indicating major functions in MC-dependent physiological processes. We have also studied a third closely related protease, originating from the same chymase locus whose cleavage specificity is closely related to the apoptosis-inducing protease from cytotoxic T cells, granzyme B. The presence of both a chymase and granzyme B in all studied mammals indicates that these two proteases bordering the locus are the founding members of this locus.


Asunto(s)
Quimasas/metabolismo , Endopeptidasas/metabolismo , Granzimas/metabolismo , Mastocitos/enzimología , Ornitorrinco/metabolismo , Animales , Quimasas/genética , Expresión Génica/genética , Granzimas/genética , Células HEK293 , Humanos , Mastocitos/metabolismo , Ornitorrinco/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
16.
Front Immunol ; 10: 2540, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736964

RESUMEN

Immunoglobulin (Ig) diversification occurs via somatic hypermutation (SHM) and class switch recombination (CSR), and is initiated by activation-induced deaminase (AID), which converts cytosine to uracil. Variable (V) region genes undergo SHM to create amino acid substitutions that produce antibodies with higher affinity for antigen. The conversion of cytosine to uracil in DNA promotes mutagenesis. Two distinct DNA repair mechanisms regulate uracil processing in Ig genes. The first involves base removal by the uracil DNA glycosylase (UNG), and the second detects uracil via the mismatch repair (MMR) complex. Methyl binding domain protein 4 (MBD4) is a uracil glycosylase and an intriguing candidate for involvement in somatic hypermutation because of its interaction with the MMR MutL homolog 1 (MLH1). We found that the DNA uracil glycosylase domain of MBD4 is highly conserved among mammals, birds, shark, and insects. Conservation of the human and chicken MBD4 uracil glycosylase domain structure is striking. Here we examined the function of MBD4 in chicken DT40 B cells which undergo constitutive SHM. We constructed structural variants of MBD4 DT40 cells using CRISPR/Cas9 genome editing. Disruption of the MBD4 uracil glycosylase catalytic region increased SHM frequency in IgM loss assays. We propose that MBD4 plays a role in SHM.


Asunto(s)
Proteínas Aviares/inmunología , Pollos/inmunología , Endodesoxirribonucleasas/inmunología , Inmunoglobulinas/genética , Hipermutación Somática de Inmunoglobulina , Uracil-ADN Glicosidasa/inmunología , Animales , Áfidos/genética , Áfidos/inmunología , Linfocitos B/inmunología , Línea Celular , Pollos/genética , Peces/genética , Peces/inmunología , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulinas/inmunología , Ratones , Ornitorrinco/genética , Ornitorrinco/inmunología , Dominios Proteicos , Tiburones/genética , Tiburones/inmunología
17.
Mol Biol Evol ; 35(5): 1238-1252, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688544

RESUMEN

The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.


Asunto(s)
Distribución Animal , Ornitorrinco/genética , Animales , Australia , Femenino , Variación Genética , Endogamia , Masculino , Tasa de Mutación , Dinámica Poblacional , Secuenciación Completa del Genoma
18.
PLoS One ; 13(3): e0193588, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29538441

RESUMEN

Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma , Animales , Aves/clasificación , Aves/genética , Bases de Datos Genéticas , Genómica/métodos , Humanos , Zarigüeyas/clasificación , Zarigüeyas/genética , Filogenia , Ornitorrinco/clasificación , Ornitorrinco/genética , Reptiles/clasificación , Reptiles/genética
19.
PLoS One ; 13(3): e0191904, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529033

RESUMEN

Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.


Asunto(s)
Melatonina/metabolismo , Ornitorrinco/metabolismo , Receptores de Melatonina/metabolismo , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Clonación Molecular/métodos , Filogenia , Ornitorrinco/genética , Unión Proteica , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/genética
20.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 1): 39-45, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29372906

RESUMEN

Monotreme lactation protein (MLP) is a recently identified protein with antimicrobial activity. It is present in the milk of monotremes and is unique to this lineage. To characterize MLP and to gain insight into the potential role of this protein in the evolution of lactation, the crystal structure of duck-billed platypus (Ornithorhynchus anatinus) MLP was determined at 1.82 Šresolution. This is the first structure to be reported for this novel, mammalian antibacterial protein. MLP was expressed as a FLAG epitope-tagged protein in mammalian cells and crystallized readily, with at least three space groups being observed (P1, C2 and P21). A 1.82 Šresolution native data set was collected from a crystal in space group P1, with unit-cell parameters a = 51.2, b = 59.7, c = 63.1 Å, α = 80.15, ß = 82.98, γ = 89.27°. The structure was solved by SAD phasing using a protein crystal derivatized with mercury in space group C2, with unit-cell parameters a = 92.7, b = 73.2, c = 56.5 Å, ß = 90.28°. MLP comprises a monomer of 12 helices and two short ß-strands, with much of the N-terminus composed of loop regions. The crystal structure of MLP reveals no three-dimensional similarity to any known structures and reveals a heretofore unseen fold, supporting the idea that monotremes may be a rich source for the identification of novel proteins. It is hypothesized that MLP in monotreme milk has evolved to specifically support the unusual lactation strategy of this lineage and may have played a central role in the evolution of these mammals.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Proteínas de la Leche/química , Ornitorrinco/metabolismo , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Cristalización , Cristalografía por Rayos X , Enterococcus faecalis/efectos de los fármacos , Evolución Molecular , Femenino , Leche/química , Proteínas de la Leche/genética , Proteínas de la Leche/farmacología , Modelos Moleculares , Filogenia , Ornitorrinco/genética , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA