Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.351
Filtrar
1.
Methods Mol Biol ; 2848: 187-196, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240524

RESUMEN

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas , Células Ganglionares de la Retina , Humanos , Animales , Ratones , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Trasplante de Células Madre/métodos , Organoides/citología , Organoides/trasplante , Técnicas de Cultivo de Célula/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Retina/citología , Células Madre Embrionarias/citología
2.
Methods Mol Biol ; 2848: 37-58, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240515

RESUMEN

Several protocols have been established for the generation of lens organoids from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and other cells with regenerative potential in humans or various animal models. It is important to examine how well the regenerated lens organoids reflect lens biology, in terms of its development, homeostasis, and aging. Toward this goal, the iSyTE database (integrated Systems Tool for Eye gene discovery; https://research.bioinformatics.udel.edu/iSyTE/ ), a bioinformatics resource tool that contains meta-analyzed gene expression data in wild-type lens across different embryonic, postnatal, and adult stages, can serve as a resource for comparative analysis. This article outlines the approaches toward effective use of iSyTE to gain insights into normal gene expression in the mouse lens, enriched expression in the lens, and differential gene expression in select mouse gene-perturbation cataract/lens defects models, which in turn can be used to evaluate expression of key lens-relevant genes in lens organoids by transcriptomics (e.g., RNA-sequencing (RNA-seq), microarrays, etc.) or other downstream methods (e.g., RT-qPCR, etc.).


Asunto(s)
Cristalino , Organoides , Regeneración , Cristalino/citología , Cristalino/metabolismo , Organoides/metabolismo , Organoides/citología , Animales , Ratones , Regeneración/genética , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Simulación por Computador , Humanos , Catarata/genética , Catarata/patología , Catarata/metabolismo , Transcriptoma , Bases de Datos Genéticas
3.
Methods Mol Biol ; 2848: 197-214, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240525

RESUMEN

Retinal pigment epithelium (RPE) cells derived from induced pluripotent stem cells (iPSCs) serve multiple roles, including among others, modeling RPE development in normal and pathological conditions, investigating mechanisms of RPE physiology, modeling retinal diseases involving the RPE, and developing strategies for regenerative therapies. We have developed a simple and efficient protocol to generate RPE tissue from human iPSCs-derived retinal organoids. The RPE tissue present in the retinal organoids is analogous to the native human RPE in differentiation timeline, histological organization, and key features of functional maturation. Building upon this system, we established a method to generate functionally mature, polarized RPE monolayers comparable to human primary RPE. This comprehensive protocol outlines the steps for isolating and culturing RPE tissue using retinal organoids. The outcome is a pure population of cells expressing mature RPE signatures and organized in a characteristic cobblestone monolayer featuring robust ultrastructural polarization. These RPE monolayers also exhibit the functional hallmarks of bona fide mature RPE cells, providing a suitable system to mimic the biology and function of the native human RPE.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Organoides , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Organoides/citología , Organoides/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas
4.
Anal Chim Acta ; 1325: 342989, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244298

RESUMEN

BACKGROUND: Patient-derived organoids (PDOs) are multi-cellular cultures with specific three-dimensional (3D) structures. Tumor organoids (TOs) offer a personalized perspective for assessing treatment response. However, the presence of normal organoid (NO) residuals poses a potential threat to their utility for personalized medicine. There is a crucial need for an effective platform capable of distinguishing between TO and NO in cancer organoid cultures. RESULTS: We introduced a whole-mount (WM) preparation protocol for in-situ visualization of the lipidomic distribution of organoids. To assess the efficacy of this method, nine breast cancer organoids (BCOs) and six normal breast organoids (NBOs) were analyzed. Poly-l-lysine (PLL) coated slides, equipped with 12 well chambers, were utilized as a carrier for the high-throughput analysis of PDOs. Optimizing the fixation time to 30 min, preserved the integrity of organoids and the fidelity of lipid compounds. The PDOs derived from the same organoid lines exhibited similar lipidomic profiles. BCOs and NBOs were obviously distinguished based on their lipidomic signatures detected by WM autofocusing (AF) scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) mass spectrometry imaging (MSI). SIGNIFICANCE: A whole-mount (WM) preparation protocol was developed to visualize lipidomic distributions of the organoids' surface. Using poly-l-lysine coated slides for high-throughput analysis, the method preserved organoid integrity and distinguished breast cancer organoids (BCOs) from normal breast organoids (NBOs) based on their unique lipidomic profiles using autofocusing scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) mass spectrometry imaging.


Asunto(s)
Neoplasias de la Mama , Lipidómica , Organoides , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Organoides/metabolismo , Organoides/citología , Lipidómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Lípidos/análisis , Lípidos/química
5.
Stem Cell Res Ther ; 15(1): 274, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218930

RESUMEN

BACKGROUND: Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS: To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS: We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS: This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proteínas de Homeodominio , Células Madre Embrionarias Humanas , Próstata , Factores de Transcripción , Humanos , Próstata/citología , Próstata/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Organoides/metabolismo , Organoides/citología , Ratones , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Animales , Línea Celular
6.
Stem Cell Res Ther ; 15(1): 273, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218985

RESUMEN

BACKGROUND: Chronic lung disease of prematurity, called bronchopulmonary dysplasia (BPD), lacks effective therapies, stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD, but current protocols do not accurately replicate the distal niche environment of the native lung. Herein, we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation. METHODS: Human PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry, immunofluorescence, and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6), E-cadherin (CDH1), NK2 Homeobox 1 (NKX2-1), HT2-280, surfactant proteins B (SFTPB) and C (SFTPC). RESULTS: We observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally, we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids, mimicking in situ fetal respiratory movements, increased AEC2 differentiation without affecting proximal epithelial differentiation. CONCLUSION: Our data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.


Asunto(s)
Diferenciación Celular , Pulmón , Organoides , Humanos , Organoides/citología , Organoides/metabolismo , Pulmón/citología , Pulmón/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Técnicas de Cocultivo/métodos , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo
7.
J Vis Exp ; (210)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39221930

RESUMEN

The ovarian surface epithelium (OSE), the outermost layer of the ovary, undergoes rupture during each ovulation and plays a crucial role in ovarian wound healing while restoring ovarian integrity. Additionally, the OSE may serve as the source of epithelial ovarian cancers. Although the OSE regenerative properties have been well studied in mice, understanding the precise mechanism of tissue repair in the human ovary remains hampered by limited access to human ovaries and suitable in vitro culture protocols. Tissue-specific organoids, miniaturized in vitro models replicating both structural and functional aspects of the original organ, offer new opportunities for studying organ physiology, disease modeling, and drug testing. Here, we describe a method to isolate primary human OSE (hOSE) from whole ovaries and establish hOSE organoids. We include a morphological and cellular characterization showing heterogeneity between donors. Additionally, we demonstrate the capacity of this culture method to evaluate hormonal effects on OSE-organoid growth over a 2-week period. This method may enable the discovery of factors contributing to OSE regeneration and facilitate patient-specific drug screenings for malignant OSE.


Asunto(s)
Organoides , Ovario , Regeneración , Humanos , Organoides/citología , Femenino , Ovario/citología , Ovario/fisiología , Regeneración/fisiología , Epitelio/fisiología
8.
Int J Biol Sci ; 20(11): 4162-4177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247826

RESUMEN

Rationale: Reconstruction of hair follicles (HFs) and eccrine sweat glands (ESGs) is essential for functional skin regeneration. In skin reconstruction research, we found that foreskin-derived epidermal cells reconstructed HF organoids unidirectionally, but not ESG organoids. Methods: To investigate key genes and pathways influencing the fate of ESG and HF, a transcriptome profiling of ESG placode-containing skin and HF placode-containing skin was employed, and key DEGs were identified and validated by RT-qPCR and immunofluorescence staining in mice and rats. Subsequently, adult human epidermal cell-derived organoids were reconstructed to probe functional roles and mechanisms of FGF7 and FGF10 by series of approaches integrating RT-qPCR, immunofluorescence-staining, WB, apoptosis assay, and pathway interference assay. Results: All members of FGF7 subfamily were among the key DEGs screened, the differential expression of FGF7 and FGF10 and their receptors FGFR1/FGFR2 was verified between ESG placode-containing skin and HF placode-containing skin. In vivo and in vitro Matrigel plug models showed that both FGF7 and FGF10 promoted fate transition of human epidermal cell-derived organoids to ESG phenotype organoids, FGF7 and FGF10 had a synergistic effect, and mainly function through the FGFR1/2-MEK1/2-ERK1/2 pathway. Conclusions: Adult epidermal cells can be manipulated to reconstruct personalized HF and ESG to meet different needs.


Asunto(s)
Glándulas Ecrinas , Factor 10 de Crecimiento de Fibroblastos , Factor 7 de Crecimiento de Fibroblastos , Organoides , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Humanos , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Organoides/metabolismo , Organoides/citología , Animales , Ratones , Glándulas Ecrinas/metabolismo , Glándulas Ecrinas/citología , Ratas , Células Epidérmicas/metabolismo , Células Epidérmicas/citología , Folículo Piloso/citología , Folículo Piloso/metabolismo , Masculino , Fenotipo
9.
Nat Commun ; 15(1): 8022, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271703

RESUMEN

Single-cell multi-omics sequencing is a powerful approach to analyze complex mechanisms underlying neuronal development and regeneration. However, current methods lack the ability to simultaneously profile RNA alternative splicing and chromatin accessibility at the single-cell level. We develop a technique, single-cell RNA isoform and chromatin accessibility sequencing (scRICA-seq), which demonstrates higher sensitivity and cost-effectiveness compared to existing methods. scRICA-seq can profile both isoforms and chromatin accessibility for up to 10,000 single cells in a single run. Applying this method to human retinal organoids, we construct a multi-omic cell atlas and reveal associations between chromatin accessibility, isoform expression of fate-determining factors, and alternative splicing events in their binding sites. This study provides insights into integrating epigenetics, transcription, and RNA splicing to elucidate the mechanisms underlying retinal neuronal development and fate determination.


Asunto(s)
Cromatina , Organoides , Retina , Análisis de la Célula Individual , Humanos , Organoides/metabolismo , Organoides/citología , Cromatina/metabolismo , Cromatina/genética , Retina/metabolismo , Retina/citología , Análisis de la Célula Individual/métodos , Empalme Alternativo , ARN/metabolismo , ARN/genética , Análisis de Secuencia de ARN/métodos , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
10.
Curr Opin Genet Dev ; 88: 102243, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142048

RESUMEN

Our knowledge of human biology is mainly originated from studies using animal models. However, interspecies differences between human and model organisms may lead to imprecise extrapolation of results obtained from model organisms. Organoids are three-dimensional cell clusters derived from pluripotent or adult stem cells that self-organize into organ-like structures reminiscent of the cognate organ. The establishment of human organoids makes it possible to study organ or tissue pathophysiology that is specific to human beings. However, most organoids do not have organ-specific vasculature, neurons, and immune cells, hence limiting their utility in emulating complex pathophysiological phenotypes. Among the various approaches to address these limitations, xenotransplantation represents a promising 'shortcut'. We will discuss recent advance in constructing tissue complexity in organoids, with a special focus on xenotransplantation.


Asunto(s)
Organoides , Trasplante Heterólogo , Organoides/citología , Humanos , Animales , Células Madre Pluripotentes/citología
11.
Biomolecules ; 14(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39199413

RESUMEN

The epididymis, a key reproductive organ, is crucial for sperm concentration, maturation, and storage. Despite a comprehensive understanding of many of its functions, several aspects of the complex processes within the epididymis remain obscure. Dysfunction in this organ is intricately connected to the formation of the microenvironment, disruptions in sperm maturation, and the progression of male infertility. Thus, elucidating the functional mechanisms of the epididymal epithelium is imperative. Given the variety of cell types present within the epididymal epithelium, utilizing a three-dimensional (3D) in vitro model provides a holistic and practical framework for exploring the multifaceted roles of the epididymis. Organoid cell culture, involving the co-cultivation of pluripotent or adult stem cells with growth factors on artificial matrix scaffolds, effectively recreates the in vivo cell growth microenvironment, thereby offering a promising avenue for studying the epididymis. The field of epididymal organoids is relatively new, with few studies focusing on their formation and even fewer detailing the generation of organoids that exhibit epididymis-specific structures and functions. Ongoing challenges in both clinical applications and mechanistic studies underscore the importance of this research. This review summarizes the established methodologies for inducing the in vitro cultivation of epididymal cells, outlines the various approaches for the development of epididymal organoids, and explores their potential applications in the field of male reproductive biology.


Asunto(s)
Epidídimo , Organoides , Epidídimo/citología , Epidídimo/metabolismo , Organoides/citología , Organoides/metabolismo , Masculino , Humanos , Animales
12.
Life Sci ; 355: 122980, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147312

RESUMEN

Testicular organoids have great potential for maintaining male fertility and even restoring male infertility. However, existing studies on generating organoids with testis-specific structure and function are scarce and come with many limitations. Research on cryopreservation of testicular organoids is even more limited, and inappropriate cryopreservation methods may result in the loss of properties in resuscitated or regenerated organoids, rendering them unsuitable for clinical or research needs. In this paper, we investigated the effects of mouse age and cell number on the self-aggregation of testicular cells into spheres in low-adsorption plates. Various media compositions, culture systems, and cell numbers were used to culture cell spheres for 14 days to form testicular organoids, and the self-organization of the organoids was assessed by histological and immunofluorescence staining. We determined the appropriate cryopreservation conditions for testicular cells, cell spheres, and tissues. Subsequently, organoids derived from cryopreserved testicular tissues, testicular cells, and testicular cell spheres were compared and evaluated by histological and immunofluorescence staining. The results indicate that testicular cell spheres consisting of 30 × 104 testicular cells from 2-week-old mice were able to form organoids highly similar to the luminal structure and cell distribution of natural mouse testicular tissues. This transformation occurred over 14 days of incubation in α-MEM medium containing 10 % knockout serum replacer (KSR) using an agarose hydrogel culture system. Additionally, the Sertoli cells were tightly connected to form a blood-testis barrier. The relative rates of tubular area, germ cells, Sertoli cells, and peritubular myoid cells were 36.985 % ± 0.695, 13.347 % ± 3.102, 47.570 % ± 0.379, and 27.406 % ± 1.832, respectively. The optimal cryopreservation protocol for primary testicular cells involved slow freezing with a cryoprotectant consisting of α-MEM with 10 % dimethyl sulfoxide (DMSO). Slow freezing with cryoprotectants containing 5 % DMSO and 5 % ethylene glycol (EG) was optimal for all different volumes of testicular cell spheres. Compared to testicular organoids generated from frozen testicular tissue and cell spheres, freezing testicular cells proved most effective in maintaining organoid differentiation characteristics and cell-cell interactions. The findings of this study contribute to a "universal" testicular organoid in vitro culture protocol with promising applications for fertility preservation and restoration in prepubertal cancer patients and adult infertile patients.


Asunto(s)
Criopreservación , Organoides , Testículo , Animales , Masculino , Criopreservación/métodos , Organoides/citología , Ratones , Testículo/citología , Células de Sertoli/citología , Ratones Endogámicos C57BL , Técnicas de Cultivo de Célula/métodos , Barrera Hematotesticular
13.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126108

RESUMEN

Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.


Asunto(s)
Sistema Nervioso Central , Organoides , Humanos , Organoides/citología , Organoides/trasplante , Regeneración Nerviosa , Animales , Neuronas/citología , Neuronas/fisiología , Medicina Regenerativa/métodos
14.
Stem Cell Res Ther ; 15(1): 244, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113154

RESUMEN

The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.


Asunto(s)
Hígado , Organoides , Organoides/metabolismo , Organoides/citología , Humanos , Hígado/citología , Hígado/metabolismo , Animales , Medicina Regenerativa/métodos
16.
PLoS One ; 19(8): e0308743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121095

RESUMEN

Human retinal organoids have become indispensable tools for retinal disease modeling and drug screening. Despite its versatile applications, the long timeframe for their differentiation and maturation limits the throughput of such research. Here, we successfully shortened this timeframe by accelerating human retinal organoid development using unique pharmacological approaches. Our method comprised three key steps: 1) a modified self-formed ectodermal autonomous multizone (SEAM) method, including dual SMAD inhibition and bone morphogenetic protein 4 treatment, for initial neural retinal induction; 2) the concurrent use of a Sonic hedgehog agonist SAG, activin A, and all-trans retinoic acid for rapid retinal cell specification; and 3) switching to SAG treatment alone for robust retinal maturation and lamination. The generated retinal organoids preserved typical morphological features of mature retinal organoids, including hair-like surface structures and well-organized outer layers. These features were substantiated by the spatial immunostaining patterns of several retinal cell markers, including rhodopsin and L/M opsin expression in the outermost layer, which was accompanied by reduced ectopic cone photoreceptor generation. Importantly, our method required only 90 days for retinal organoid maturation, which is approximately two-thirds the time necessary for other conventional methods. These results indicate that thoroughly optimized pharmacological interventions play a pivotal role in rapid and precise photoreceptor development during human retinal organoid differentiation and maturation. Thus, our present method may expedite human retinal organoid research, eventually contributing to the development of better treatment options for various degenerative retinal diseases.


Asunto(s)
Activinas , Diferenciación Celular , Proteínas Hedgehog , Organoides , Retina , Transducción de Señal , Tretinoina , Humanos , Activinas/farmacología , Activinas/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/citología , Proteínas Hedgehog/metabolismo , Tretinoina/farmacología , Retina/metabolismo , Retina/citología , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
17.
Anal Chem ; 96(32): 13061-13069, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39093612

RESUMEN

The coculture of patient-derived tumor organoids (PDOs) and autologous immune cells has been considered as a useful ex vivo surrogate of in vivo tumor-immune environment. However, the immune interactions between PDOs and autologous immune cells, including immune-mediated killing behaviors and immune-related cytokine variations, have yet to be quantitatively evaluated. This study presents a microfluidic chip for quantifying interactions between PDOs and autologous immune cells (IOI-Chip). A baffle-well structure is designed to ensure efficient trapping, long-term coculturing, and in situ fluorescent observation of a limited amount of precious PDOS and autologous immune cells, while a microbeads-based immunofluorescence assay is designed to simultaneously quantify multiple kinds of immune-related cytokines in situ. The PDO apoptosis and 2 main immune-related cytokines, TNF-α and IFN-γ, are simultaneously quantified using samples from a lung cancer patient. This study provides, for the first time, a capability to quantify interactions between PDOs and autologous immune cells at 2 levels, the immune-mediated killing behavior, and multiple immune-related cytokines, laying the technical foundation of ex vivo assessment of patient immune response.


Asunto(s)
Dispositivos Laboratorio en un Chip , Organoides , Humanos , Organoides/inmunología , Organoides/citología , Organoides/metabolismo , Interferón gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Citocinas/metabolismo , Técnicas de Cocultivo , Apoptosis , Técnicas Analíticas Microfluídicas/instrumentación
18.
Nature ; 633(8028): 165-173, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143209

RESUMEN

The intimate relationship between the epithelium and immune system is crucial for maintaining tissue homeostasis, with perturbations therein linked to autoimmune disease and cancer1-3. Whereas stem cell-derived organoids are powerful models of epithelial function4, they lack tissue-resident immune cells that are essential for capturing organ-level processes. We describe human intestinal immuno-organoids (IIOs), formed through self-organization of epithelial organoids and autologous tissue-resident memory T (TRM) cells, a portion of which integrate within the epithelium and continuously survey the barrier. TRM cell migration and interaction with epithelial cells was orchestrated by TRM cell-enriched transcriptomic programs governing cell motility and adhesion. We combined IIOs and single-cell transcriptomics to investigate intestinal inflammation triggered by cancer-targeting biologics in patients. Inflammation was associated with the emergence of an activated population of CD8+ T cells that progressively acquired intraepithelial and cytotoxic features. The appearance of this effector population was preceded and potentiated by a T helper-1-like CD4+ population, which initially produced cytokines and subsequently became cytotoxic itself. As a system amenable to direct perturbation, IIOs allowed us to identify the Rho pathway as a new target for mitigation of immunotherapy-associated intestinal inflammation. Given that they recapitulate both the phenotypic outcomes and underlying interlineage immune interactions, IIOs can be used to study tissue-resident immune responses in the context of tumorigenesis and infectious and autoimmune diseases.


Asunto(s)
Intestinos , Organoides , Femenino , Humanos , Masculino , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/citología , Movimiento Celular/inmunología , Células Epiteliales/inmunología , Células Epiteliales/citología , Inmunoterapia/efectos adversos , Inflamación/inmunología , Inflamación/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/citología , Intestinos/inmunología , Intestinos/citología , Células T de Memoria/citología , Células T de Memoria/inmunología , Organoides/citología , Organoides/inmunología , Análisis de la Célula Individual , Transcriptoma , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
19.
Stem Cell Reports ; 19(9): 1351-1367, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39178845

RESUMEN

While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and expression of metabolism and cellular stress genes. Variability in hCO phenotypes correlated with stem cell gene expression prior to differentiation and technical factors associated with seeding, suggesting iPSC quality and treatment are important for differentiation outcomes. Cross-site reproducibility of hCO cell type proportions and organization encourages future prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.


Asunto(s)
Diferenciación Celular , Corteza Cerebral , Células Madre Pluripotentes Inducidas , Organoides , Humanos , Organoides/citología , Organoides/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Reproducibilidad de los Resultados , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Neuronas/citología , Técnicas de Cultivo de Célula/métodos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA