Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.452
Filtrar
1.
Biomaterials ; 313: 122775, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241549

RESUMEN

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Nanopartículas , Infarto del Miocardio/terapia , Animales , Nanopartículas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Recuperación de la Función , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones , Microburbujas , Ondas Ultrasónicas
2.
J Acoust Soc Am ; 156(3): 1565-1574, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39240123

RESUMEN

Audible very-high frequency sound (VHFS) and ultrasound (US) have been rated more unpleasant than lower frequency sounds when presented to listeners at similar sensation levels (SLs). In this study, 17 participants rated the sensory unpleasantness of 14-, 16-, and 18-kHz tones and a 1-kHz reference tone. Tones were presented at equal subjective loudness levels for each individual, corresponding to levels of 10, 20, and 30 dB SL measured at 1 kHz. Participants were categorized as either "symptomatic" or "asymptomatic" based on self-reported previous symptoms that they attributed to exposure to VHFS/US. In both groups, subjective loudness increased more rapidly with sound pressure level for VHFS/US than for the 1-kHz reference tone, which is consistent with a reduced dynamic range at the higher frequencies. For loudness-matched tones, participants rated VHFS/US as more unpleasant than that for the 1-kHz reference. These results suggest that increased sensory unpleasantness and reduced dynamic range at high frequencies should be considered when designing or deploying equipment which emits VHFS/US that could be audible to exposed people.


Asunto(s)
Estimulación Acústica , Percepción Sonora , Ondas Ultrasónicas , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Sonido , Percepción Auditiva , Presión , Umbral Auditivo
3.
Theranostics ; 14(12): 4806-4821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239514

RESUMEN

Sonogenetics is an emerging medical technology that uses acoustic waves to control cells through sonosensitive mediators (SSMs) that are genetically encoded, thus remotely and non-invasively modulating specific molecular events and/or biomolecular functions. Sonogenetics has opened new opportunities for targeted spatiotemporal manipulation in the field of gene and cell-based therapies due to its inherent advantages, such as its noninvasive nature, high level of safety, and deep tissue penetration. Sonogenetics holds impressive potential in a wide range of applications, from tumor immunotherapy and mitigation of Parkinsonian symptoms to the modulation of neural reward pathway, and restoration of vision. This review provides a detailed overview of the mechanisms and classifications of established sonogenetics systems and summarizes their applications in disease treatment and management. The review concludes by highlighting the challenges that hinder the further progress of sonogenetics, paving the way for future advances.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Terapia Genética/métodos , Terapia Genética/tendencias , Animales , Ondas Ultrasónicas , Neoplasias/terapia , Neoplasias/genética , Inmunoterapia/métodos
4.
ACS Appl Bio Mater ; 7(9): 6201-6212, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39231419

RESUMEN

The synthesis of bioinspired metal-organic frameworks (MOFs) performed in mild conditions with a high quality is greatly demanded. Moreover, the influence of the morphology and structure of bio-MOFs on the cell interaction and toxicity is important to determine. In this work, we developed an ultrasound (US)-assisted synthesis of HKUST-1 MOFs under mild conditions and investigated the influence of the parameters of synthesis on the morphology, structure, and biological properties of the developed MOFs. It was found that the US power, reaction time, temperature, and type of solvent composition would affect the morphology, size, and yield of the obtained crystals. Employing the optimal synthetic conditions, five types of HKUST-1 MOFs were prepared, achieving highest yields (67.8-96.2%) and different morphologies (octahedral, dodecahedral, icosahedral). The relationship between the morphological features and biological properties of developed bio-MOFs was evaluated and discussed. The cellular association and cytotoxicity of MOF@US and MOF@US-PARG were studied on various cell cultures, i.e. normal mouse embryonic fibroblasts (MEF NF2), chronic myeloid leukemia (K562), and mouse melanoma (B16-F10). The experimental results showed that MOF@US-PARG has a higher percentage of association compared to MOF@US. It has also been shown that the cytotoxicity depends on the concentration and surface modification of the developed MOFs.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Estructuras Metalorgánicas , Tamaño de la Partícula , Ratones , Animales , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Humanos , Supervivencia Celular/efectos de los fármacos , Ondas Ultrasónicas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Propiedades de Superficie , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
5.
Nat Commun ; 15(1): 8021, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271721

RESUMEN

Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Microburbujas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de la radiación , Animales , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Inflamación/metabolismo , Ratones , Humanos , Estrés Mecánico , Ondas Ultrasónicas , Masculino , Capilares/metabolismo , Femenino
6.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273248

RESUMEN

Collagen is considered to be an intercellular adhesive that prevents tissue stretching or damage. It is widely utilized in cosmetic skin solutions, drug delivery, vitreous substitutions, 3D cell cultures, and surgery. In this study, we report the development of a green technology for manufacturing collagen peptides from flatfish skin using ultrasound and enzymatic treatment and a subsequent assessment on skin functionality. First, flatfish skin was extracted using ultrasound in distilled water (DW) for 6 h at 80 °C. Molecular weight analysis via high-performance liquid chromatography (HPLC) after treatment with industrial enzymes (alcalase, papain, protamex, and flavourzyme) showed that the smallest molecular weight (3.56 kDa) was achieved by adding papain (0.5% for 2 h). To determine functionality based on peptide molecular weight, two fractions of 1100 Da and 468 Da were obtained through separation using Sephadex™ G-10. We evaluated the effects of these peptides on protection against oxidative stress in human keratinocytes (HaCaT) cells, inhibition of MMP-1 expression in human dermal fibroblast (HDF) cells, reduction in melanin content, and the inhibition of tyrosinase enzyme activity in murine melanoma (B16F10) cells. These results demonstrate that the isolated low-molecular-weight peptides exhibit superior skin anti-oxidant, anti-wrinkle, and whitening properties.


Asunto(s)
Colágeno , Péptidos , Piel , Animales , Humanos , Piel/efectos de los fármacos , Piel/metabolismo , Colágeno/metabolismo , Péptidos/química , Péptidos/farmacología , Ratones , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ondas Ultrasónicas , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Células HaCaT , Peso Molecular , Melaninas , Monofenol Monooxigenasa/metabolismo
7.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274875

RESUMEN

The recovery of valuable nutritional compounds, like proteins, from waste streams and by-products is a key strategy for enhancing production sustainability and opening up new market potential. This research aimed to use high-intensity ultrasound as an innovative technique to extract the soluble proteins from the pumpkin leaves. The impact of various sonication amplitudes and duration periods on protein yield, functional properties, antioxidant qualities, and structural characteristics, were studied. Utilization of ultrasound technology significantly increased the yield of pumpkin leaf protein by up to 40%-six times higher than maceration. The ultrasound extraction provided a RuBisCO-rich protein fraction with high radical scavenging and chelating activities, especially at 40% amplitude. Cavitation modified the tertiary and secondary structures of leaf proteins: the amount of α-helix changed based on amplitude (12.3-37.7%), the amount of random coil increased to 20.4%, and the amount of ß-turn reduced from 31 to 18.6%. The alteration of the protein fluorescence spectrum (blue shift in spectrum) provides further evidence that ultrasound alters the proteins' molecular structure in comparation with maceration; the maximum tryptophan fluorescence intensity decreased from 22.000 to 17.096. The hydrophobicity values of 76.8-101.5 were substantially higher than the maceration value of 53.4, indicating that ultrasound improved the hydrophobicity of protein surfaces. Ultrasound resulted in a significant increase in solubility in an acidic environment with the increase in sonication amplitude. A 2.4-fold increase in solubility at pH 2 becomes apparent (20% amplitude; 43.1%) versus maceration (18.2%). The emulsifying ability decreases from 6.62 to 5.13 m2/g once the sonication amplitude increases by 20-70%. By combining the ultrasound periods and amplitudes, it is possible to create high-value protein leaf extracts with improved properties which can find real application as food additives and dietary supplements.


Asunto(s)
Cucurbita , Tecnología Química Verde , Hojas de la Planta , Proteínas de Plantas , Cucurbita/química , Hojas de la Planta/química , Proteínas de Plantas/química , Antioxidantes/química , Ondas Ultrasónicas , Sonicación/métodos , Interacciones Hidrofóbicas e Hidrofílicas
8.
J Nanobiotechnology ; 22(1): 539, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237993

RESUMEN

Maxillofacial bone defects can severely impact quality of life by impairing physiological functions such as chewing, breathing, swallowing, and pronunciation. Polyether ether ketone (PEEK) is commonly used for the repair of maxillofacial defects due to its mechanical adaptability, while its osteogenic properties still need refinement. Herein, we have utilized the piezoelectric effect exhibited by barium titanate (BTO) under low-intensity pulsed ultrasound (LIPUS) to develop an ultrasound responsive PEEK (PDA@BTO-SPEEK, PBSP) through the mediating effect of polydopamine (PDA), for repairing maxillofacial bone defects. After modification by PDA@BTO, PBSP possesses better hydrophilicity, which is conducive to cell growth and adhesion. Simultaneously, by virtue of the piezoelectric characteristics of BTO, PBSP obtains a piezoelectric coefficient that matches the bone cortex. Notably, when PBSP is stimulated by LIPUS, it can generate stable electricity and effectively accelerate the osteogenic differentiation of osteoblasts through the regulation of the Piezo1-induced calcium (Ca2+) influx and Akt/GSK3ß/ß-catenin pathway. In addition, PBSP presents satisfactory therapeutic effects in rat skull defect models, and its osteogenic efficiency can be further improved under LIPUS stimulation with high tissue penetration. Collectively, PBSP + LIPUS exhibits great potential as a promising alternative strategy for the repair of maxillofacial bone defects.


Asunto(s)
Benzofenonas , Glucógeno Sintasa Quinasa 3 beta , Cetonas , Osteogénesis , Polietilenglicoles , Polímeros , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , beta Catenina , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Polímeros/química , Osteogénesis/efectos de los fármacos , Ratas , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cetonas/química , Cetonas/farmacología , beta Catenina/metabolismo , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Ondas Ultrasónicas , Indoles/química , Indoles/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Cráneo/efectos de los fármacos , Titanio/química , Titanio/farmacología , Regeneración Ósea/efectos de los fármacos
9.
Water Sci Technol ; 89(2): 421-433, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39219139

RESUMEN

In recent decades, water pollution caused by emerging contaminants such as pharmaceuticals, has attracted much attention. Antibiotics are commonly used pharmaceuticals, and their residue in water may accelerate the development of antibiotic resistance genes, which can produce resistance to the treatment of diseases. In this study, two energy-based systems, heat/peroxymonosulfate (PMS) and ultrasound (US)/PMS were chosen to treat the typical antibiotic tetracycline (TC) in water. The influencing factors and kinetic equations of TC degradation by heat/PMS and US/PMS were investigated and the rates of TC degradation by the two systems were compared. The results showed that the optimal PMS concentration required for TC degradation in both systems was 0.3 mM, and neither system was affected by solution pH. The power of the US in the US/PMS system was as important as the temperature in the heat/PMS system because they provided activation energy. Both heat and US could activate PMS to degrade TC, and US was slightly superior with 80% TC removal under the conditions of [TC] = 20 mg/L, [PMS] = 0.3 mM, pH = 6.4, T = 20 °C, and US power = 550 W. US is considered to be more advantageous in activating PMS to degrade TC.


Asunto(s)
Calor , Peróxidos , Tetraciclina , Contaminantes Químicos del Agua , Tetraciclina/química , Cinética , Peróxidos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Antibacterianos/química , Ondas Ultrasónicas
10.
Biotechnol J ; 19(8): e2400310, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212193

RESUMEN

The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study. The quantification of alkaline phosphatase (ALP) activity, Alizarin Red S staining, ALP staining, and the establishment of a calvarial defect model were used to evaluate osteogenic effects. Immunofluorescence was performed to observe the expression of microfilaments and transient receptor potential melastatin 7 (TRPM7). The levels of F-actin/G-actin and osteogenesis-related proteins under LIPUS alone or LIPUS combined with cytoskeleton interfering drugs (Cytochalasin D [CytoD] or Jasplakinolide [JA]) were assayed by western blot. Quantitative real-time reverse transcription polymerase chain reaction was utilized to measure the expression of Trpm7 mRNA. Moreover, adenoviral Trpm7 knockdown was verified using western blot. The results demonstrated that LIPUS promoted bone formation in vivo. Under osteogenic induction in vitro, the osteogenesis of BMSCs induced by LIPUS was accompanied by the depolymerization and rearrangement of microfilaments and increased levels of TRPM7. By perturbing intracellular actin dynamics, CytoD enhanced the pro-osteogenicity of LIPUS and increased TRPM7 level, while JA inhibited the pro-osteogenicity of LIPUS and reduced TRPM7 level. Additionally, the knockdown of Trpm7 suppressed the osteogenic promotion of BMSCs induced by LIPUS. The transient depolymerization and rearrangement of the cytoskeleton microfilaments mediated by LIPUS can affect TRPM7 expression and subsequently promote the osteogenesis of BMSCs. This study provides further direction for exploring the molecular mechanism of LIPUS, as a mechanical stress, in facilitating the osteogenic differentiation of BMSCs.


Asunto(s)
Citoesqueleto de Actina , Actinas , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Canales Catiónicos TRPM , Animales , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/genética , Ratas , Ratas Sprague-Dawley , Ondas Ultrasónicas , Células Cultivadas , Masculino , Depsipéptidos
11.
ACS Nano ; 18(35): 24139-24153, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39172436

RESUMEN

We introduce a two-pronged strategy comprising focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening and long-circulating biodegradable nanoparticles (NPs) for systemic delivery of nucleic acids to the brain. Biodegradable poly(ß-amino ester) polymer-based NPs were engineered to stably package various types of nucleic acid payloads and enable prolonged systemic circulation while retaining excellent serum stability. FUS was applied to a predetermined coordinate within the brain to transiently open the BBB, thereby allowing the systemically administered long-circulating NPs to traverse the BBB and accumulate in the FUS-treated brain region, where plasmid DNA or mRNA payloads produced reporter proteins in astrocytes and neurons. In contrast, poorly circulating and/or serum-unstable NPs, including the lipid NP analogous to a platform used in clinic, were unable to provide efficient nucleic acid delivery to the brain regardless of the BBB-opening FUS. The marriage of FUS-mediated BBB opening and the long-circulating NPs engineered to copackage mRNA encoding CRISPR-associated protein 9 and single-guide RNA resulted in genome editing in astrocytes and neurons precisely in the FUS-treated brain region. The combined delivery strategy provides a versatile means to achieve efficient and site-specific therapeutic nucleic acid delivery to and genome editing in the brain via a systemic route.


Asunto(s)
Barrera Hematoencefálica , Edición Génica , Nanopartículas , Barrera Hematoencefálica/metabolismo , Nanopartículas/química , Animales , Edición Génica/métodos , Encéfalo/metabolismo , Ratones , Ondas Ultrasónicas , Astrocitos/metabolismo , ADN/química , ADN/administración & dosificación , Polímeros/química , ARN Mensajero/metabolismo , ARN Mensajero/genética , Neuronas/metabolismo , Técnicas de Transferencia de Gen , Plásmidos/administración & dosificación , Plásmidos/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/administración & dosificación , Ácidos Nucleicos/metabolismo , Humanos
12.
Nat Commun ; 15(1): 7369, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191796

RESUMEN

Remote regulation of cells in deep tissue remains a significant challenge. Low-intensity pulsed ultrasound offers promise for in vivo therapies due to its non-invasive nature and precise control. This study uses pulsed ultrasound to control calcium influx in mammalian cells and engineers a therapeutic cellular device responsive to acoustic stimulation in deep tissue without overexpressing calcium channels or gas vesicles. Pulsed ultrasound parameters are established to induce calcium influx in HEK293 cells. Additionally, cells are engineered to express a designed calcium-responsive transcription factor controlling the expression of a selected therapeutic gene, constituting a therapeutic cellular device. The engineered sonogenetic system's functionality is demonstrated in vivo in mice, where an implanted anti-inflammatory cytokine-producing cellular device effectively alleviates acute colitis, as shown by improved colonic morphology and histopathology. This approach provides a powerful tool for precise, localized control of engineered cells in deep tissue, showcasing its potential for targeted therapeutic delivery.


Asunto(s)
Colitis , Ondas Ultrasónicas , Animales , Humanos , Células HEK293 , Ratones , Colitis/patología , Colitis/terapia , Calcio/metabolismo , Ingeniería Celular/métodos , Ratones Endogámicos C57BL , Femenino , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
13.
Mar Drugs ; 22(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39195483

RESUMEN

Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.


Asunto(s)
Carragenina , Peso Molecular , Rhodophyta , Humanos , Rhodophyta/química , Carragenina/farmacología , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Fibroblastos/efectos de los fármacos , Peróxido de Hidrógeno , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Polimerizacion , Ondas Ultrasónicas , Viscosidad
14.
Ultrason Sonochem ; 109: 107010, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094265

RESUMEN

Purple mangosteen scarfskin polysaccharide has many important physiological functions, but its preparation method, structure, and function need further exploration. A polysaccharide was obtained from mangosteen scarfskin by ultrasonic-assisted extraction and purified. On this basis, its structure and physicochemical properties were investigated. The Congo red experiment was used to determine whether it has a triple helix conformation. The structure of purple mangosteen scarfskin polysaccharide was further analyzed by infrared spectroscopy and nuclear magnetic analysis. The antioxidant activities of the above three polysaccharides were studied by related experiments. It was found that the monosaccharide composition of purple mangosteen scarfskin polysaccharide mainly contained a large amount of arabinose, a small amount of rhamnoose and a very small amount of galacturonic acid, and its core main chain was composed of 1,4-α-arabinose. It did not have this spatial configuration. After the acetylation of purple mangosteen scarfskin polysaccharide, the acetylated derivative with a degree of substitution of 0.33 was obtained. It was found that they had certain scavenging and inhibiting effects on hydroxyl radicals and lipid peroxidation, and their activities were related to the concentration of polysaccharides. Meanwhile, the antioxidant activity of the polysaccharide was significantly enhanced after the modified treatment of acetylation, which indicated that chemical modification could effectively improve some activities of polysaccharide. The above studies provided some reference value for the further research and development of purple mangosteen scarfskin polysaccharide.


Asunto(s)
Garcinia mangostana , Polisacáridos , Ondas Ultrasónicas , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Acetilación , Garcinia mangostana/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos
15.
Ultrason Sonochem ; 109: 107004, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094266

RESUMEN

In this study, the study on physicochemical, rheological properties and water-holding capacity of gelatin of chicken lungs was investigated to replace bovine and porcine gelatin. The extraction rates of chicken, bovine and porcine lung gelatin by ultrasound assisted alkaline protease were 52.12 %, 69.06 % and 70 %, respectively. Three lung gelatins had similar molecular weight distribution in SDS-PAGE with low content of high molecular weight subunits. The amino acid content of bovine lung gelatin (18.03 %) was higher than in chicken (16.62 %) and porcine lung (15.30 %). The highest intensity of 2θ = 7.5° diffraction peak in bovine lung gelatin was observed, which indicated that the triple helix content of bovine lung gelatin was higher than that of chicken and porcine lung gelatin. The lowest apparent viscosity of chicken lung gelatin was 0.253 mPa·s, but the highest water holding capacity of chicken lung gelatin was 331.72 %. Therefore, chicken lung gelatin can be used as a substitute for bovine and porcine gelatin in some functional properties.


Asunto(s)
Pollos , Gelatina , Pulmón , Reología , Agua , Animales , Gelatina/química , Agua/química , Bovinos , Porcinos , Fenómenos Químicos , Viscosidad , Ondas Ultrasónicas
16.
Ultrason Sonochem ; 109: 107005, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098097

RESUMEN

Experimental studies have shown that ultrasonic cavitation can reversibly open the blood-brain barrier (BBB) to assist drug delivery. Nevertheless, the majority of the present study focused on experimental aspects of BBB opening. In this study, we developed a three-bubble-liquid-solid model to investigate the dynamic behavior of multiple bubbles within the blood vessels, and elucidate the physical mechanism of drug molecules through endothelial cells under ultrasonic cavitation excitation. The results showed that the large bubbles have a significant inhibitory effect on the movement of small bubbles, and the vibration morphology of intravascular microbubbles was affected by the acoustic parameters, microbubble size, and the distance between the microbubbles. The ultrasonic cavitation can significantly enhance the unidirectional flux of drug molecules, and the unidirectional flux growth rate of the wall can reach more than 5 %. Microjets and shock waves emitted from microbubbles generate different stress distribution patterns on the vascular wall, which in turn affects the pore size of the vessel wall and the permeability of drug molecules. The vibration morphology of microbubbles is related to the concentration, arrangement and scale of microbubbles, and the drug permeation impact can be enhanced by optimizing bubble size and acoustic parameters. The results offer an extensive depiction of the factors influencing the blood-brain barrier opening through ultrasonic cavitation, and the model may provide a potential technique to actively regulate the penetration capacity of drugs through endothelial layer of the neurovascular system by regulating BBB opening.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Ondas Ultrasónicas , Barrera Hematoencefálica/metabolismo , Simulación por Computador , Modelos Biológicos
17.
Ultrason Sonochem ; 109: 107014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111249

RESUMEN

Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.


Asunto(s)
Álcalis , Fagopyrum , Polisacáridos , Ondas Ultrasónicas , Fagopyrum/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Álcalis/química , Antioxidantes/química , Antioxidantes/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Fenómenos Químicos , Animales , Peso Molecular
18.
Ultrason Sonochem ; 109: 107018, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128406

RESUMEN

Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 µm and surface area increased by 30.44 µm2, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into ß-sheets, increasing the ß-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Líquidos Iónicos , Seda , Ondas Ultrasónicas , Líquidos Iónicos/química , Seda/química , Materiales Biocompatibles/química , Animales
19.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133851

RESUMEN

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Asunto(s)
Amiloide , Muramidasa , Amiloide/química , Amiloide/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Pliegue de Proteína , Temperatura , Ondas Ultrasónicas , Simulación de Dinámica Molecular
20.
BMC Plant Biol ; 24(1): 758, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112960

RESUMEN

Constant-frequency ultrasonic treatment helped to improve seed germination. However, variable-frequency ultrasonic treatment on maize seed germination were rarely reported. In this study, maize seeds were exposed to 20-40 kHz ultrasonic for 40 s. The germination percentage and radicle length of maize seeds increased by 10.4% and 230.5%. Ultrasonic treatment also significantly increased the acid protease, α-amylase, and ß-amylase contents by 96.4%, 73.8%, and 49.1%, respectively. Transcriptome analysis showed that 11,475 differentially expressed genes (DEGs) were found in the ultrasonic treatment and control groups, including 5,695 upregulated and 5,780 downregulated. Metabolic pathways and transcription factors (TFs) were significantly enriched among DEGs after ultrasonic treatment. This included metabolism and genetic information processing, that is, ribosome, proteasome, and pyruvate metabolism, sesquiterpenoid, triterpenoid, and phenylpropanoid biosynthesis, and oxidative phosphorylation, as well as transcription factors in the NAC, MYB, bHLH, WRKY, AP2, bZIP, and ARF families. Variable-frequency ultrasonic treatment increased auxin, gibberellin, and salicylic acid by 5.5%, 37.3%, and 28.9%, respectively. Abscisic acid significantly decreased by 33.2%. The related DEGs were upregulated and downregulated to varying degrees. Seed germination under the abiotic stress conditions of salt stress (NaCl solution), drought (PEG solution), and waterlogging (water-saturated sand bed) under ultrasonic treatment were promoted, radicle length was significantly increased by 30.2%, 30.5%, and 27.3%, respectively; and germination percentage by 14.8%, 20.1%, and 21.6%, respectively. These findings provide new insight into the mechanisms through ultrasonic to promote maize seed germination.


Asunto(s)
Germinación , Semillas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Germinación/efectos de la radiación , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Ondas Ultrasónicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA