Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98.077
Filtrar
1.
Biomaterials ; 312: 122733, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106819

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Resistencia a Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ligando Inductor de Apoptosis Relacionado con TNF , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
2.
Biomaterials ; 312: 122743, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39111233

RESUMEN

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Animales , Nanopartículas/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Transferencia de Energía , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones Endogámicos BALB C , Luz , Ratones Desnudos , Óxido Nítrico/metabolismo
3.
Biomaterials ; 312: 122755, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39151270

RESUMEN

Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.


Asunto(s)
Materiales Biomiméticos , Cobre , Humanos , Cobre/química , Materiales Biomiméticos/química , Catálisis , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Cerio/química , Línea Celular Tumoral , Animales , Química Clic/métodos , Biomimética/métodos , Ratones
4.
Biomaterials ; 313: 122771, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190940

RESUMEN

The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.


Asunto(s)
Fluorocarburos , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Microambiente Tumoral , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Animales , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Fluorocarburos/química , Fluorocarburos/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Humanos , Ratones , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fototerapia/métodos , Femenino
5.
Biomaterials ; 313: 122777, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39222545

RESUMEN

Telomere length plays a crucial role in cellular aging and the risk of diseases. Unlike normal cells, cancer cells can extend their own survival by maintaining telomere stability through telomere maintenance mechanism. Therefore, regulating the lengths of telomeres have emerged as a promising approach for anti-cancer treatment. In this study, we introduce a nanoscale octopus-like structure designed to induce physical entangling of telomere, thereby efficiently triggering telomere dysfunction. The nanoscale octopus, composed of eight-armed PEG (8-arm-PEG), are functionalized with cell penetrating peptide (TAT) to facilitate nuclear entry and are covalently bound to N-Methyl Mesoporphyrin IX (NMM) to target G-quadruplexes (G4s) present in telomeres. The multi-armed configuration of the nanoscale octopus enables targeted binding to multiple G4s, physically disrupting and entangling numerous telomeres, thereby triggering telomere dysfunction. Both in vitro and in vivo experiments indicate that the nanoscale octopus significantly inhibits cancer cell proliferation, induces apoptosis through telomere entanglement, and ultimately suppresses tumor growth. This research offers a novel perspective for the development of innovative anti-cancer interventions and provides potential therapeutic options for targeting telomeres.


Asunto(s)
Apoptosis , Telómero , Telómero/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Animales , Línea Celular Tumoral , Ratones , G-Cuádruplex/efectos de los fármacos , Ratones Desnudos , Polietilenglicoles/química , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Femenino , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Nanoestructuras/química
6.
Biomaterials ; 313: 122792, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226652

RESUMEN

The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.


Asunto(s)
Compuestos de Boro , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Animales , Compuestos de Boro/química , Humanos , Ratones , Línea Celular Tumoral , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Albúminas/química , Albúminas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
7.
Biomaterials ; 313: 122793, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226655

RESUMEN

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/efectos de los fármacos , Animales , Catálisis , Humanos , Hierro/química , Línea Celular Tumoral , Nanopartículas/química , Porosidad , Ratones , Cisplatino/química , Cisplatino/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Ratones Endogámicos BALB C , Peróxido de Hidrógeno/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Femenino
8.
Biomaterials ; 313: 122788, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39236628

RESUMEN

Drug resistance is a significant challenge in cancer chemotherapy and is a primary factor contributing to poor recovery for cancer patients. Although drug-loaded nanoparticles have shown promise in overcoming chemotherapy resistance, they often carry a combination of drugs and require advanced design and manufacturing processes. Furthermore, they seldom approach chemotherapy-resistant tumors from an immunotherapy perspective. In this study, we developed a therapeutic nanovaccine composed solely of chemotherapy-induced resistant tumor antigens (CIRTAs) and the immune adjuvant Toll-like receptor (TLR) 7/8 agonist R848 (CIRTAs@R848). This nanovaccine does not require additional carriers and has a simple production process. It efficiently delivers antigens and immune stimulants to dendritic cells (DCs) simultaneously, promoting DCs maturation. CIRTAs@R848 demonstrated significant tumor suppression, particularly when used in combination with the immune checkpoint blockade (ICB) anti-PD-1 (αPD-1). The combined therapy increased the infiltration of T cells into the tumor while decreasing the proportion of regulatory T cells (Tregs) and modulating the tumor microenvironment, resulting in long-term immune memory. Overall, this study introduces an innovative strategy for treating chemotherapy-resistant tumors from a novel perspective, with potential applications in personalized immunotherapy and precision medicine.


Asunto(s)
Vacunas contra el Cáncer , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Inmunoterapia , Nanopartículas , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Desoxicitidina/farmacología , Animales , Inmunoterapia/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Nanopartículas/química , Ratones , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos C57BL , Femenino , Imidazoles/farmacología , Imidazoles/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Nanovacunas
9.
Biomaterials ; 313: 122801, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39236630

RESUMEN

Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.


Asunto(s)
Inmunoterapia , Liposomas , Neoplasias , Liposomas/química , Humanos , Inmunoterapia/métodos , Animales , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124987, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163774

RESUMEN

While numerous methods exist for diagnosing tumors through the detection of miRNA within tumor cells, few can simultaneously achieve both tumor diagnosis and treatment. In this study, a novel graphene oxide (GO)-based DNA nanodevice (DND), initiated by miRNA, was developed for fluorescence signal amplification imaging and photodynamic therapy in tumor cells. After entering the cells, tumor-associated miRNA drives DND to Catalyzed hairpin self-assembly (CHA). The CHA reaction generated a multitude of DNA Y-type structures, resulting in a substantial amplification of Ce6 fluorescence release and the generation of numerous singlet oxygen (1O2) species induced by laser irradiation, consequently inducing cell apoptosis. In solution, DND exhibited high selectivity and sensitivity to miRNA-21, with a detection limit of 11.47 pM. Furthermore, DND discriminated between normal and tumor cells via fluorescence imaging and specifically generated O21 species in tumor cells upon laser irradiation, resulting in tumor cells apoptosis. The DND offer a new approach for the early diagnosis and timely treatment of malignant tumors.


Asunto(s)
ADN , Grafito , MicroARNs , Fotoquimioterapia , Nanomedicina Teranóstica , Fotoquimioterapia/métodos , Humanos , MicroARNs/análisis , Grafito/química , Nanomedicina Teranóstica/métodos , ADN/química , Apoptosis/efectos de los fármacos , Imagen Óptica , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen
11.
Gene ; 932: 148896, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209183

RESUMEN

Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.


Asunto(s)
Neoplasias , Proteínas de Unión al ARN , Humanos , Animales , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microambiente Tumoral , Metabolismo de los Lípidos , Terapia Molecular Dirigida/métodos , Obesidad/metabolismo , Obesidad/genética
12.
Biomaterials ; 313: 122805, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39250865

RESUMEN

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Asunto(s)
Cobre , Nanoestructuras , Neoplasias , Cobre/química , Humanos , Animales , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Muerte Celular/efectos de los fármacos
13.
Biomaterials ; 312: 122740, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39096839

RESUMEN

Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.


Asunto(s)
Asparaginasa , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Animales , Asparaginasa/uso terapéutico , Asparaginasa/farmacología , Asparaginasa/química , Inmunoterapia/métodos , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Humanos , Línea Celular Tumoral , Sinergismo Farmacológico , Elastina/química , Elastina/metabolismo , Metástasis de la Neoplasia , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Distribución Tisular
14.
Results Probl Cell Differ ; 73: 353-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242386

RESUMEN

Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Comunicación Celular , Nanotubos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estructuras de la Membrana Celular
15.
AAPS PharmSciTech ; 25(7): 211, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242397

RESUMEN

Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.


Asunto(s)
Doxorrubicina , Piranos , Piranos/administración & dosificación , Piranos/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Humanos , Animales , Línea Celular Tumoral , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Nanopartículas/química , Sinergismo Farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Ratones , Poliésteres/química , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Femenino , Liberación de Fármacos , Policétidos Poliéteres
16.
J Immunother Cancer ; 12(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244215

RESUMEN

BACKGROUND: Immune checkpoint blockade (ICB) has made remarkable achievements, but newly identified armored and cold tumors cannot respond to ICB therapy. The high prevalence of concomitant medications has huge impact on immunotherapeutic responses, but the clinical effects on the therapeutic outcome of armored and cold tumors are still unclear. METHODS: In this research, using large-scale transcriptomics datasets, the expression and potential biological functions of angiotensin II receptor 1 (AGTR1), the target of angiotensin receptor blocker (ARB), were investigated. Next, the roles of ARB in tumor cells and tumor microenvironment cells were defined by a series of in vitro and in vivo assays. In addition, the clinical impacts of ARB on ICB therapy were assessed by multicenter cohorts and meta-analysis. RESULTS: AGTR1 was overexpressed in armored and cold tumors and associated with poor response to ICB therapy. ARB, the inhibitor for AGTR1, only suppressed the aggressiveness of tumor cells with high AGTR1 expression, which accounted for a very small proportion. Further analysis revealed that AGTR1 was always highly expressed in cancer-associated fibroblasts (CAFs) and ARB inhibited type I collagen expression in CAFs by suppressing the RhoA-YAP axis. Moreover, ARB could also drastically reverse the phenotype of armored and cold to soft and hot in vivo, leading to a higher response to ICB therapy. In addition, both our in-house cohorts and meta-analysis further supported the idea that ARB can significantly enhance ICB efficacy. CONCLUSION: Overall, we identify AGTR1 as a novel target in armored and cold tumors and demonstrate the improved therapeutic efficacy of ICB in combination with ARB. These findings could provide novel clinical insight into how to treat patients with refractory armored and cold tumors.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , Microambiente Tumoral , Línea Celular Tumoral , Femenino
17.
J Indian Soc Pedod Prev Dent ; 42(3): 184-189, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250201

RESUMEN

BACKGROUND: Chemotherapy, a cornerstone treatment for childhood cancers, can negatively impact oral health. This study aimed to evaluate the prevalence and evolution of oral complications in these patients. MATERIALS AND METHODS: A prospective observational study enrolled 44 children diagnosed with malignancy undergoing chemotherapy at a tertiary care institute in central India. Oral examinations were performed at baseline, with follow-ups at 3-6 and 9-12 months. Data collected included demographics, medical history, oral hygiene practices, and oral lesions. Blood counts and World Health Organization grading for mucositis were used. Descriptive statistics and appropriate statistical tests analyzed the data (P ≤ 0.05). RESULTS: Acute lymphoblastic leukemia (ALL) was the most prevalent malignancy. Children reported various oral complaints such as ulcers, bleeding gums, and difficulty eating. Mucositis prevalence significantly decreased over follow-up visits (baseline: 56.8% and second follow-up: 13.3%). Gingival inflammation was present, though mean scores decreased over time. Oral hygiene scores varied without significant changes. Caries experience scores increased from baseline to follow-up. CONCLUSION: This study identified a high prevalence of ALL and diverse oral complications in children undergoing chemotherapy. While mucositis severity lessened over time, other issues such as caries persisted. These findings highlight the critical need for preventive oral care strategies to safeguard this vulnerable population's oral health.


Asunto(s)
Antineoplásicos , Humanos , Niño , Estudios Prospectivos , Masculino , Femenino , Preescolar , India/epidemiología , Antineoplásicos/efectos adversos , Enfermedades de la Boca/epidemiología , Enfermedades de la Boca/inducido químicamente , Prevalencia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Higiene Bucal , Estomatitis/epidemiología , Estomatitis/inducido químicamente , Adolescente , Caries Dental/epidemiología , Neoplasias/tratamiento farmacológico , Neoplasias/complicaciones
18.
Support Care Cancer ; 32(10): 646, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251491

RESUMEN

INTRODUCTION: The development of immune checkpoint inhibitors (ICIs) represents one of the most significant advancements in cancer treatment over the past decade. Nivolumab, a widely used ICI, has been incorporated into the therapeutic regimens for various cancers. As with any drug, this drug also has side effects, including class-specific immune-related adverse effects (irAEs). Although irAEs are not rare, their diagnosis can be challenging. This study examines the emergency department (ED) visits of patients undergoing nivolumab therapy, focusing on diagnostic challenges, evaluating the management, and outcomes of irAEs in the ED setting. MATERIAL AND METHODS: A retrospective cohort study was conducted on adult patients who received nivolumab therapy for any cancer between April 1, 2018, and March 31, 2023, at a large, urban tertiary care center. In this study, we evaluated the ED visits of patients receiving nivolumab. In addition to previous studies, we evaluated irAEs in detail (percentage, recognizability, risk factors, reasons for late recognition, and outcome). Patient data were collected from electronic medical records and patient's medical files. The anamnesis, laboratory, and imaging results, ED management, and consultation notes were examined separately for each ED visit. Logistic regression models were employed to identify significant univariable predictors of ED visits and irAEs. RESULTS: A total of 199 patients were included in the study, all of whom had metastatic cancer. Of these, 154 patients (77.4%) received nivolumab therapy for non-small cell lung cancer. Most patients (71.9%, n = 143) had at least one additional comorbidity. One hundred and eleven patients (55.8%) presented to the ED. Hypertension (OR: 2.425, 95% CI: 1.226-4.795, p = 0.011) and chronic obstructive pulmonary disease (OR: 2.489, 95% CI: 1.133-5.468, p = 0.023) were identified as risk factors for ED visits. A total of 21 irAEs were diagnosed (14 in ED, 6 in the oncology clinic, and 1 in the inpatient ward). Univariate analysis found no significant association between irAE diagnosis and any specific factors. CONCLUSION: A significant proportion of the patients treated with nivolumab for advanced cancer present to ED for ICI-related adverse events, although most cases were not attributable to irAEs. Due to the vague symptomatology of irAEs, their recognition and diagnosis in the ED can be challenging. Close collaboration between ED physicians and oncologists is paramount to the management of patients with cancer in the ED.


Asunto(s)
Servicio de Urgencia en Hospital , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Nivolumab , Humanos , Nivolumab/efectos adversos , Nivolumab/administración & dosificación , Servicio de Urgencia en Hospital/estadística & datos numéricos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Adulto , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/administración & dosificación , Factores de Riesgo , Estudios de Cohortes , Anciano de 80 o más Años , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Visitas a la Sala de Emergencias
19.
Support Care Cancer ; 32(10): 647, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251506

RESUMEN

PURPOSE: Taxanes are widely used chemotherapeutic agents that frequently cause nail changes and have a significant impact on patients' quality of life. Despite the prevalence of taxane-induced nail toxicity, limited data are available regarding evidence-based management strategies for the prevention or treatment of taxane-induced nail changes. Therefore, we aimed to gain insights into the prevention, treatment, and evaluation of nail changes in patients with cancer in Japan by conducting a questionnaire survey of physicians, pharmacists, and nurses involved in oncology treatment. METHODS: The questions addressed prophylactic methods, evaluation practices, and treatment approaches for various nail disorders. The questionnaires were distributed on March 1, 2022, with a response deadline of December 1, 2022. RESULTS: Of the 120 questionnaires distributed, 88 (73.3%) were returned, and all of them were analyzed. The respondents included 69 physicians (32 oncologists, 26 breast surgeons, 6 dermatologists, 3 obstetricians/gynecologists, 1 gastroenterological surgeon, and 1 urologist), 9 pharmacists, and 10 nurses. Prophylactic measures included moisturizing (58.0%), protection (42.0%), cooling therapy (37.5%), and cleanliness (33.0%). Approximately 70% of the respondents used the Common Criteria for Adverse Events (CTCAE), while approximately 30% did not use a specific evaluation method. Opinions regarding treatment with antimicrobial or corticosteroid ointments varied; however, all severe cases were referred by dermatologists. CONCLUSION: Our survey revealed that the management of chemotherapy-induced nail changes varies in clinical practice in Japan. These findings emphasize the need for standardized management strategies and further research.


Asunto(s)
Antineoplásicos , Enfermedades de la Uña , Taxoides , Humanos , Japón , Taxoides/efectos adversos , Taxoides/uso terapéutico , Enfermedades de la Uña/inducido químicamente , Encuestas y Cuestionarios , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Femenino , Masculino , Neoplasias/tratamiento farmacológico , Calidad de Vida , Personal de Salud/estadística & datos numéricos , Persona de Mediana Edad
20.
Medicine (Baltimore) ; 103(36): e39334, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252322

RESUMEN

KRAS mutations play a critical role in the development and progression of several cancers, including non-small cell lung cancer and pancreatic cancer. Despite advancements in targeted therapies, the management of KRAS-mutant tumors remains challenging. This study leverages bibliometric analysis and a comprehensive review of clinical trials to identify emerging immunotherapies and potential treatments for KRAS-related cancers. Using the Web of Science Core Collection and Citespace, we analyzed publications from January 2008 to March 2023 alongside 52 clinical trials from ClinicalTrials.gov and WHO's registry, concentrating on immune checkpoint blockades (ICBs) and novel therapies. Our study highlights an increased focus on the tumor immune microenvironment and precision therapy. Clinical trials reveal the effectiveness of ICBs and the promising potential of T-cell receptor T-cell therapy and vaccines in treating KRAS-mutant cancers. ICBs, particularly in combination therapies, stand out in managing KRAS-mutant tumors. Identifying the tumor microenvironment and gene co-mutation profiles as key research areas, our findings advocate for multidisciplinary approaches to advance personalized cancer treatment. Future research should integrate genetic, immunological, and computational studies to unveil new therapeutic targets and refine treatment strategies for KRAS-mutant cancers.


Asunto(s)
Bibliometría , Inmunoterapia , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Inmunoterapia/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Ensayos Clínicos como Asunto , Neoplasias/terapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA