Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.095
Filtrar
1.
Immun Inflamm Dis ; 12(9): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222024

RESUMEN

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) play a pivotal role in immunosuppression and tumor progression in hepatocellular carcinoma (HCC). While various treatments like surgical resection, ablation, and radiotherapy have been studied for their effects on circulating MDSC frequencies in HCC patients, the findings remain inconclusive. Transarterial Chemoembolization (TACE) stands as the standard care for unresectable HCC, with Microparticle TACE (mTACE) gaining prominence for its capacity to induce significant tumor necrosis. However, the immunological ramifications of such pathological outcomes are scarcely reported. METHODS AND RESULTS: This study aims to elucidate the alterations in MDSC subtypes, specifically monocytic MDSCs (mMDSCs) and early-stage MDSCs (eMDSCs), post-mTACE and to investigate their clinical correlations in HCC patients. A cohort comprising 75 HCC patients, 16 liver cirrhosis patients, and 20 healthy controls (HC) was studied. Peripheral blood samples were collected and analyzed for MDSC subtypes. The study also explored the associations between MDSC frequencies and various clinical parameters in HCC patients. The frequency of mMDSCs was significantly elevated in the HCC group compared to liver cirrhosis and HC. Importantly, mMDSC levels were strongly correlated with aggressive clinical features of HCC, including tumor size, vascular invasion, and distant metastasis. Post-mTACE, a marked reduction in mMDSC frequencies was observed, while eMDSC levels remained stable. CONCLUSIONS: Our findings underscore the critical role of mMDSCs in HCC pathogenesis and their potential as a therapeutic target. The study also highlights the efficacy of mTACE in modulating the immunosuppressive tumor microenvironment, thereby opening new avenues for combinatorial immunotherapeutic strategies in HCC management.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Células Supresoras de Origen Mieloide/inmunología , Quimioembolización Terapéutica/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Adulto , Microambiente Tumoral/inmunología
2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(7): 723-727, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39223887

RESUMEN

OBJECTIVE: To investigate the characteristic of circulating microparticle in patients with acute myocardial infarction (AMI) and its possible mechanism of promoting coagulation. METHODS: A prospective case-control study was conducted. The patients with coronary heart disease admitted to the second department of cardiology in Harbin First Hospital from June to November 2023 were enrolled, and they were grouped according to whether the patients occurred AMI or not. On the day of admission, disseminated intravascular coagulation (DIC) score was calculated. At the same time, fasting venous blood was collected, and the levels of D-dimer, fibrin degradation product (FDP) and the activities of major coagulation factors were detected. The level of circulating microparticle was determined by microparticle trapping method. The microparticle carrying tissue factor (TF+MP) level was detected by tissue factor (TF) dependent F Xa production assay. Spearman correlation method was used to analyze the correlation among the indicators. RESULTS: A total of 52 patients with coronary heart disease were enrolled, including 26 patients in AMI group and 26 patients in non-AMI group. There was no significant difference in gender, age, body mass index (BMI), underlying diseases, smoking history, and pre-admission treatment of patients between the two groups, indicating that the baseline data of the two groups were balanced and comparable. Compared with the non-AMI group, the DIC score and D-dimer, FDP levels in the AMI group were significantly increased [DIC score: 3 (3, 4) vs. 3 (2, 3), D-dimer (mg/L): 8.80 (6.84, 15.66) vs. 2.13 (1.64, 3.86), FDP (mg/L): 30.13 (19.30, 52.54) vs. 20.00 (13.51, 28.37), all P < 0.01], indicating that the degree of coagulation activation in AMI patients was more severe. The consumption of major coagulation factors in the coagulation pathway in the AMI group was heavier than that in the non-AMI group [F II: 59.45% (49.65%, 71.25%) vs. 63.65% (49.98%, 73.22%), F V: 96.95% (73.50%, 112.78%) vs. 105.05% (73.48%, 131.48%), F VII: 42.30% (36.98%, 51.98%) vs. 53.40% (46.58%, 69.88%), F X: 60.90% (48.22%, 80.82%) vs. 73.50% (56.80%, 85.98%), F XI: 82.45% (62.90%, 99.10%) vs. 92.40% (73.90%, 114.25%), F XII: 29.90% (12.42%, 42.38%) vs. 34.65% (16.32%, 48.20%), all P < 0.05]. The circulating TF+MP level in the AMI group was significantly higher than that in the non-AMI group [nmol/L: 0.13 (0.06, 0.20) vs. 0.08 (0.04, 0.15), P < 0.05]. There was no significant difference in the level of circulating microparticle between AMI group and non-AMI group [nmol/L: 1.24 (0.71, 3.77) vs. 1.35 (0.73, 2.14), P > 0.05]. Correlation analysis showed that circulating TF+MP level in the patients with coronary heart disease was significantly positively correlated with coagulation indicator DIC score (r = 0.307, P = 0.027), D-dimer (r = 0.696, P < 0.001) and FDP (r = 0.582, P < 0.001), and there was a strong negative correlation with exogenous pathway factor F VII (r = -0.521, P < 0.001) and common pathway factor F X (r = -0.332, P = 0.016). CONCLUSIONS: The circulating TF+MP level in AMI patients was significantly higher than that in the non-AMI patients. TF+MP may play an important role in activating the extrinsic coagulation pathway, exacerbating coagulation factor consumption, and promoting clot formation during AMI occurrence.


Asunto(s)
Coagulación Sanguínea , Micropartículas Derivadas de Células , Productos de Degradación de Fibrina-Fibrinógeno , Infarto del Miocardio , Tromboplastina , Humanos , Infarto del Miocardio/sangre , Infarto del Miocardio/diagnóstico , Estudios Prospectivos , Estudios de Casos y Controles , Micropartículas Derivadas de Células/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Tromboplastina/metabolismo , Factores de Coagulación Sanguínea/metabolismo , Factores de Coagulación Sanguínea/análisis , Femenino , Masculino , Coagulación Intravascular Diseminada/sangre , Persona de Mediana Edad , Enfermedad Coronaria/sangre
3.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125631

RESUMEN

Kawasaki disease (KD) is a febrile illness characterised by systemic inflammation of small- and medium-sized blood vessels, which commonly occurs in young children. Although self-limiting, there is a risk of developing coronary artery lesions as the disease progresses, with delay in diagnosis and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, this article not only summarises the key research gaps associated with KD, but also evaluates the possibility of using circulating endothelial injury biomarkers, such as circulating endothelial cells, endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tools for KD: a "liquid biopsy" approach. The challenges of translating liquid biopsies to use in KD and the opportunities for improvement in its diagnosis and management that such translation may provide are discussed. The use of endothelial damage markers, which are easily obtained via blood collection, as diagnostic tools is promising, and we hope this will be translated to clinical applications in the near future.


Asunto(s)
Biomarcadores , Síndrome Mucocutáneo Linfonodular , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/sangre , Humanos , Biopsia Líquida/métodos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ácidos Nucleicos Libres de Células/sangre , Pronóstico , Micropartículas Derivadas de Células/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126004

RESUMEN

Clodronate (Clod), a first-generation bisphosphonate, acts as a natural analgesic inhibiting vesicular storage of the nociception mediator ATP by vesicular nucleotide transporter (VNUT). Epidermal keratinocytes participate in cutaneous nociception, accumulating ATP within vesicles, which are released following different stimulations. Under stress conditions, keratinocytes produce microvesicles (MVs) by shedding from plasma membrane evagination. MV secretion has been identified as a novel and universal mode of intercellular communication between cells. The aim of this project was to evaluate if two nociceptive stimuli, Capsaicin and Potassium Hydroxide (KOH), could stimulate MV shedding from human keratinocytes, if these MVs could contain ATP, and if Clod could inhibit this phenomenon. In our cellular model, the HaCaT keratinocyte monolayer, both Capsaicin and KOH stimulated MV release after 3 h incubation, and the released MVs contained ATP. Moreover, Clod (5 µM) was able to reduce Caps-induced MV release and abolish the one KOH induced, while the Dansylcadaverine, an endocytosis inhibitor of Clod uptake, partially failed to block the bisphosphonate activity. Based on these new data and given the role of the activation of ATP release by keratinocytes as a vehicle for nociception and pain, the "old" bisphosphonate Clodronate could provide the pharmacological basis to develop new local analgesic drugs.


Asunto(s)
Adenosina Trifosfato , Capsaicina , Ácido Clodrónico , Queratinocitos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Adenosina Trifosfato/metabolismo , Ácido Clodrónico/farmacología , Capsaicina/farmacología , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/efectos de los fármacos , Nocicepción/efectos de los fármacos , Línea Celular
5.
Molecules ; 29(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125084

RESUMEN

Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.


Asunto(s)
Exosomas , Medicina Regenerativa , Cicatrización de Heridas , Exosomas/metabolismo , Humanos , Medicina Regenerativa/métodos , Animales , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo
6.
Neurosci Lett ; 841: 137951, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39191299

RESUMEN

Mesenchymal stem cells (MSCs) are involved in tissue repair and anti-inflammatory activities and have shown promising therapeutic efficiency in different animal models of neurodegenerative disorders. Microvesicles (MVs), implicated in cellular communication, are secreted from MSCs and play a key role in determining the fate of cell differentiation. Our study examines the effect of human umbilical cord MSC-derived MVs (hUC-MSC MVs) on the proliferation and differentiation potential of adult neural stem cells (NSCs). Results showed that 0.2 µg MSC derived MVs significantly increased the viability of NSCs and their proliferation, as demonstrated by an increase in the number of neurospheres and their derived cells, compared to controls. In addition, all hUC-MSC MVs concentrations (0.1, 0.2 and 0.4 µg) induced the differentiation of NSCs toward precursors (Olig2 + ) and mature oligodendrocytes (MBP+). This increase in mature oligodendrocytes was inversely proportional to the dose of MVs. Moreover, hUC-MSC MVs induced the differentiation of NSCs into neurons (ß-tubulin + ), in a dose-dependent manner, but had no effect on astrocytes (GFAP+). Furthermore, treatment of NSCs with hUC-MSC MVs (0.1 and 0.2 µg) significantly increased the expression levels of the proliferation marker Ki67 gene, compared to controls. Finally, hUC-MSC MVs (0.1 µg) significantly increased the expression level of Sox10 transcripts; but not Pax6 gene, demonstrating an increased NSC ability to differentiate into oligodendrocytes. In conclusion, our study showed that hUC-MSC MVs increased NSC proliferation in vitro and induced NSC differentiation into oligodendrocytes and neurons, but not astrocytes.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Micropartículas Derivadas de Células , Células Madre Mesenquimatosas , Células-Madre Neurales , Neurogénesis , Oligodendroglía , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Proliferación Celular/fisiología , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiología , Células Cultivadas , Oligodendroglía/citología , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Células Madre Adultas/fisiología , Células Madre Adultas/citología , Animales , Factor de Transcripción PAX6/metabolismo , Supervivencia Celular/fisiología
7.
Prog Biophys Mol Biol ; 192: 19-36, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159788

RESUMEN

In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Animales , Biomarcadores/metabolismo , Exosomas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Técnicas Biosensibles/métodos
8.
Exp Physiol ; 109(9): 1593-1603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39092897

RESUMEN

The purpose of this study was to determine the effect of circulating microvesicles isolated from chronic electronic (e-)cigarette users on cultured human umbilical vein endothelial cell (HUVEC) expression of nuclear factor-κB (NF-κB), cellular cytokine release, phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production. The HUVECs were treated with microvesicles isolated via flow cytometry from nine non-tobacco users (five male and four female; 22 ± 2 years of age) and 10 e-cigarette users (six male and four female; 22 ± 2 years of age). Microvesicles from e-cigarette users induced significantly greater release of interleukin-6 (183.4 ± 23.6 vs. 150.6 ± 15.4 pg/mL; P = 0.002) and interleukin-8 (160.0 ± 31.6 vs. 129.4 ± 11.2 pg/mL; P = 0.01), in addition to expression of p-NF-κB p65 (Ser536) (18.8 ± 3.4 vs. 15.6 ± 1.5 a.u.; P = 0.02) from HUVECs compared with microvesicles from non-tobacco users. Nuclear factor-κB p65 was not significantly different between microvesicles from the non-tobacco users and from the e-cigarette users (87.6 ± 8.7 vs. 90.4 ± 24.6 a.u.; P = 0.701). Neither total eNOS (71.4 ± 21.8 vs. 80.4 ± 24.5 a.u.; P = 0.413) nor p-eNOS (Thr495) (229.2 ± 26.5 vs. 222.1 ± 22.7 a.u.; P = 0.542) was significantly different between microvesicle-treated HUVECs from non-tobacco users and e-cigarette users. However, p-eNOS (Ser1177) (28.9 ± 6.2 vs. 45.8 ± 9.0 a.u.; P < 0.001) expression was significantly lower from e-cigarette users compared with non-tobacco users. Nitric oxide production was significantly lower (8.2 ± 0.6 vs. 9.7 ± 0.9 µmol/L; P = 0.001) in HUVECs treated with microvesicles from e-cigarette users compared with microvesicles from non-tobacco users. This study demonstrated increased NF-κB activation and inflammatory cytokine production, in addition to diminished eNOS activity and NO production resulting from e-cigarette use. HIGHLIGHTS: What is the central question of this study? Circulating microvesicles contribute to cardiovascular health and disease via their effects on the vascular endothelium. The impact of electronic (e-)cigarette use on circulating microvesicle phenotype is not well understood. What is the main finding and its importance? Circulating microvesicles from e-cigarette users increase endothelial cell inflammation and impair endothelial nitric oxide production. Endothelial inflammation and diminished nitric oxide bioavailability are central factors underlying endothelial dysfunction and, in turn, cardiovascular disease risk. Deleterious changes in the functional phenotype of circulating microvesicles might contribute to the reported adverse effects of e-cigarette use on cardiovascular health.


Asunto(s)
Micropartículas Derivadas de Células , Sistemas Electrónicos de Liberación de Nicotina , Células Endoteliales de la Vena Umbilical Humana , Inflamación , FN-kappa B , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Masculino , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Adulto Joven , Inflamación/metabolismo , FN-kappa B/metabolismo , Vapeo/efectos adversos , Vapeo/metabolismo , Adulto , Interleucina-6/metabolismo , Citocinas/metabolismo , Interleucina-8/metabolismo , Células Cultivadas , Fosforilación
9.
BMC Res Notes ; 17(1): 233, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175048

RESUMEN

OBJECTIVE: Several pathological conditions trigger the formation of microvesicles (MVs), including infectious diseases such as COVID-19. The shedding of MVs increases the levels of inflammatory factors (e.g., interleukin-6; IL-6) and ultimately leads to an inflammatory cascade response, while also increasing the procoagulant response. The current study aimed to evaluate the level of circulating MVs and their procoagulant activity as well as the serum level of IL-6 in patients with COVID-19 and healthy controls. In this case-control study, 65 patients with COVID-19 and 30 healthy individuals were sampled after obtaining written informed consent. MVs counting was measured using conjugated CD61, CD45, CD235a, and Annexin-V antibodies. Additionally, the procoagulant activity of MVs and the IL-6 level were estimated using enzyme-linked immunosorbent assay (ELISA). RESULTS: The majority of MVs were platelet-derived MVs (PMVs). Patients with COVID-19 had significantly higher levels of MVs, procoagulant MVs, and IL-6 compared to healthy controls (p < 0.001). MVs were significantly correlated with procoagulant MVs, D-Dimer levels, fibrinogen, and IL-6, but not with platelet, lymphocyte, and neutrophil counts. CONCLUSION: Elevated levels of procoagulant MVs and their association with inflammatory and coagulation markers in patients with COVID-19 are suggested as a novel circulatory biomarker to evaluate and predict the procoagulant activity and severity of COVID-19.


Asunto(s)
COVID-19 , Micropartículas Derivadas de Células , Interleucina-6 , SARS-CoV-2 , Humanos , COVID-19/sangre , Micropartículas Derivadas de Células/metabolismo , Masculino , Femenino , Estudios de Casos y Controles , Persona de Mediana Edad , Interleucina-6/sangre , Adulto , Coagulación Sanguínea , Plaquetas/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Anciano
10.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013336

RESUMEN

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Asunto(s)
Antígenos CD34 , Apoptosis , Micropartículas Derivadas de Células , Sangre Fetal , Células Madre Hematopoyéticas , Estrés Oxidativo , Humanos , Sangre Fetal/citología , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Micropartículas Derivadas de Células/metabolismo , Células HL-60 , Peroxidación de Lípido , Leucocitos Mononucleares/metabolismo , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Theranostics ; 14(9): 3486-3508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948064

RESUMEN

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Asunto(s)
Fibrosis , Metiltransferasas , Monocitos , FN-kappa B , Humanos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Monocitos/metabolismo , Masculino , Animales , FN-kappa B/metabolismo , Eritrocitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Femenino , Metilación , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucocitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelación Ventricular , Miocardio/metabolismo , Miocardio/patología , Nanomedicina/métodos
12.
Blood Coagul Fibrinolysis ; 35(5): 227-231, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38973516

RESUMEN

OBJECTIVE: We aimed to evaluate the effect of hyperbilirubinemia and phototherapy on total apoptotic, platelet-derived, endothelial-derived, and tissue factor (TF)-positive apoptotic microparticle (MP) levels in neonates with nonhemolytic pathologic hyperbilirubinemia. METHODS: Thirty-three term neonates with nonhemolytic pathologic hyperbilirubinemia and 25 healthy term neonates were included. MP levels were analyzed by flow cytometry using peripheral blood samples only once for the neonates in the control group and twice for the neonates in the study group (before and after phototherapy). Annexin V-positive MPs were defined as apoptotic MPs. Platelet-derived MPs were defined as those containing CD31. MPs containing CD144 were defined as endothelial-derived MPs, and MPs expressing TF were identified as those containing CD142. RESULTS: The rates of total apoptotic and endothelial-derived apoptotic MPs were significantly higher in the study group than the control group before phototherapy (P = 0.012 and P = 0.003, respectively) and after phototherapy (P = 0.046 and P = 0.001, respectively). Total apoptotic, platelet-derived, endothelial-derived, and TF-positive apoptotic MPs did not show any significant differences before and after phototherapy in the study group (P = 0.908, P = 0.823, P = 0.748, and P = 0.437, respectively). CONCLUSIONS: Our study demonstrated that total apoptotic and endothelial-derived apoptotic MPs are increased in cases of nonhemolytic pathologic hyperbilirubinemia. We showed that phototherapy does not have a significant effect on apoptotic MP levels. Further studies are needed to evaluate the risk of elevated apoptotic MPs on the development of thromboembolism in neonates with nonhemolytic pathologic hyperbilirubinemia.


Asunto(s)
Apoptosis , Micropartículas Derivadas de Células , Fototerapia , Humanos , Recién Nacido , Fototerapia/métodos , Micropartículas Derivadas de Células/metabolismo , Masculino , Femenino , Hiperbilirrubinemia Neonatal/terapia , Hiperbilirrubinemia Neonatal/sangre , Estudios de Casos y Controles , Hiperbilirrubinemia/terapia , Hiperbilirrubinemia/sangre
14.
J Nanobiotechnology ; 22(1): 457, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085827

RESUMEN

Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.


Asunto(s)
Micropartículas Derivadas de Células , Degeneración del Disco Intervertebral , Campos Magnéticos , Células Madre Mesenquimatosas , Mitocondrias , Núcleo Pulposo , Células Madre Mesenquimatosas/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Mitocondrias/metabolismo , Animales , Micropartículas Derivadas de Células/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratas , Cinesinas/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Proteínas de Unión al GTP rab/metabolismo , Masculino
15.
Sci Rep ; 14(1): 16589, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025899

RESUMEN

Chronic exposure to heavy metals as aluminum chloride (AlCl3) could result in severe health hazards such as chronic renal injury. The present study aimed to evaluate the therapeutic potential of adipose tissue-derived stem cells (ASCs) in comparison to their microvesicles (MV) in AlCl3-induced chronic renal injury. Forty-eight adult male Wistar rats were divided into four groups: Control group, AlCl3-treated group, AlCl3/ASC-treated group, and AlCl3/MV-treated group. Biochemical studies included estimation of serum urea and creatinine levels, oxidative biomarkers assay, antioxidant biomarkers, serum cytokines (IL-1ß, IL-8, IL-10, and IL-33), real time-PCR analysis of renal tissue MALT1, TNF-α, IL-6, and serum miR-150-5p expression levels. Histopathological studies included light and electron microscopes examination of renal tissue, Mallory trichrome stain for fibrosis, Periodic acid Schiff (PAS) stain for histochemical detection of carbohydrates, and immunohistochemical detection of Caspase-3 as apoptosis marker, IL-1B as a proinflammatory cytokine and CD40 as a marker of MVs. AlCl3 significantly deteriorated kidney function, enhanced renal MDA and TOS, and serum cytokines concentrations while decreased the antioxidant parameters (SOD, GSH, and TAC). Moreover, serum IL-10, TNF-α, miR-150-5p, and renal MALT1 expression values were significantly higher than other groups. Kidney sections showed marked histopathological damage in both renal cortex and medulla in addition to enhanced apoptosis and increased inflammatory cytokines immunoexpression than other groups. Both ASCs and MVs administration ameliorated the previous parameters levels with more improvement was detected in MVs-treated group. In conclusion: ASCs-derived MVs have a promising ameliorating effect on chronic kidney disease.


Asunto(s)
Ratas Wistar , Animales , Masculino , Ratas , Micropartículas Derivadas de Células/metabolismo , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Citocinas/metabolismo , Citocinas/sangre , Riñón/patología , Riñón/metabolismo , Cloruro de Aluminio/efectos adversos , Estrés Oxidativo , Células Madre/metabolismo , Tejido Adiposo/metabolismo , Trasplante de Células Madre , Biomarcadores/sangre
16.
PLoS One ; 19(7): e0306775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985836

RESUMEN

BACKGROUND: This study evaluated the effect of microvesicles(MVs) from quiescent and TGF-ß1 stimulated hepatic stellate cells (HSC-MVs, TGF-ß1HSC-MVs) on H2O2-induced human umbilical vein endothelial cells (HUVECs) injury and CCl4-induced rat hepatic vascular injury. METHODS: HUVECs were exposed to hydrogen peroxide (H2O2) to establish a model for vascular endothelial cell injury. HSC-MVs or TGF-ß1HSC-MVs were co-cultured with H2O2-treated HUVECs, respectively. Indicators including cell survival rate, apoptosis rate, oxidative stress, migration, invasion, and angiogenesis were measured. Simultaneously, the expression of proteins such as PI3K, AKT, MEK1+MEK2, ERK1+ERK2, VEGF, eNOS, and CXCR4 was assessed, along with activated caspase-3. SD rats were intraperitoneally injected with CCl4 twice a week for 10 weeks to induce liver injury models. HSC-MVs or TGF-ß1HSC-MVs were injected into the tail vein of rats. Liver and hepatic vascular damage were also detected. RESULTS: In H2O2-treated HUVECs, HSC-MVs increased cell viability, reduced cytotoxicity and apoptosis, improved oxidative stress, migration, and angiogenesis, and upregulated protein expression of PI3K, AKT, MEK1/2, ERK1/2, VEGF, eNOS, and CXCR4. Conversely, TGF-ß1HSC-MVs exhibited opposite effects. CCl4- induced rat hepatic injury model, HSC-MVs reduced the release of ALT and AST, hepatic inflammation, fatty deformation, and liver fibrosis. HSC-MVs also downregulated the protein expression of CD31 and CD34. Conversely, TGF-ß1HSC-MVs demonstrated opposite effects. CONCLUSION: HSC-MVs demonstrated a protective effect on H2O2-treated HUVECs and CCl4-induced rat hepatic injury, while TGF-ß1HSC-MVs had an aggravating effect. The effects of MVs involve PI3K/AKT/VEGF, CXCR4, and MEK/ERK/eNOS pathways.


Asunto(s)
Células Estrelladas Hepáticas , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno , Factor de Crecimiento Transformador beta1 , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Peróxido de Hidrógeno/farmacología , Ratas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Masculino , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/lesiones , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Supervivencia Celular/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Movimiento Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo
17.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38984997

RESUMEN

Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.


Asunto(s)
Micropartículas Derivadas de Células , Ratones Noqueados , Microglía , Mitocondrias , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animales , Microglía/metabolismo , Mitocondrias/metabolismo , Ratones , Micropartículas Derivadas de Células/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
18.
J Extracell Vesicles ; 13(7): e12494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051763

RESUMEN

Microvesicles (MVs) containing proteins, nucleic acid or organelles are shed from the plasma membrane. Although the mechanisms of MV budding are well elucidated, the connection between endosomal trafficking and MV formation remains poorly understood. In this report, RAB22A is revealed to be crucial for EGFR-containing MVs formation by the RAB GTPase family screening. RAB22A recruits TBC1D2B, a GTPase-activating protein (GAP) of RAB7A, to inactivate RAB7A, thus preventing EGFR from being transported to late endosomes and lysosomes. RAB22A also engages SH3BP5L, a guanine-nucleotide exchange factor (GEF) of RAB11A, to activate RAB11A on early endosomes. Consequently, EGFR is recycled to the cell surface and packaged into MVs. Furthermore, EGFR can phosphorylate RAB22A at Tyr136, which in turn promotes EGFR-containing MVs formation. Our findings illustrate that RAB22A acts as a sorter on early endosomes to sort EGFR to recycling endosomes for MV shedding by both activating RAB11A and inactivating RAB7A.


Asunto(s)
Endosomas , Receptores ErbB , Proteínas de Unión al GTP rab , Receptores ErbB/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Humanos , Transporte de Proteínas , Micropartículas Derivadas de Células/metabolismo , Proteínas de Unión a GTP rab7/metabolismo , Células HeLa , Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo
19.
Cancer Lett ; 598: 217133, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079563

RESUMEN

Brain metastases (BMs) are the most common sites of metastasis in patients with non-small cell lung cancer (NSCLC). However, BMs are not responsive to immunotherapy because of the blood-brain barrier. This is because intracranial immune cells such as M2 tumor-associated macrophages (TAMs) accumulate, creating an immunosuppressive tumor microenvironment. In this study, we focused on irradiated tumor cell-released microparticles (RT-MPs) that can cross the blood-brain barrier and influence the intracranial immune microenvironment. Using animal models of BMs, we observed that RT-MPs could penetrate the blood-brain barrier and be swallowed by TAMs. Then the microenvironment of TAMs is shifted from the M2 phenotype to the M1 phenotype, thereby modulating the interactions between TAMs and tumor cells. Single-cell sequencing analysis demonstrated that TAMs, after internalizing RT-MPs, active chemokine signaling pathways and secrete more chemokines, such as CCL5, CXCL2, CXCL1, CCL3, CCL4, and CCL22, attracting more CD4+ T cells and CD8+ T cells, improving immune-mediated killing, and enhancing subsequent combination anti-PD-1 therapy. These findings provide a preclinical foundation for exploring alternative treatments for patients with immunoresistant NSCLC BMs.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Asociados a Tumores , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Humanos , Ratones , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Micropartículas Derivadas de Células/metabolismo , Línea Celular Tumoral , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Femenino
20.
J Extracell Vesicles ; 13(6): e12460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853287

RESUMEN

Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.


Asunto(s)
Podocitos , Podocitos/metabolismo , Humanos , Micropartículas Derivadas de Células/metabolismo , Masculino , Femenino , Enfermedades Renales/orina , Enfermedades Renales/diagnóstico , Enfermedades Renales/metabolismo , Citometría de Flujo/métodos , Persona de Mediana Edad , Adulto , Biomarcadores/orina , Receptores de Fosfolipasa A2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA