Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61.299
Filtrar
1.
Biomaterials ; 312: 122732, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088913

RESUMEN

Fully restoring the lost population of cardiomyocytes and heart function remains the greatest challenge in cardiac repair post myocardial infarction. In this study, a pioneered highly ROS-eliminating hydrogel was designed to enhance miR-19a/b induced cardiomyocyte proliferation by lowering the oxidative stress and continuously releasing miR-19a/b in infarcted myocardium in situ. In vivo lineage tracing revealed that ∼20.47 % of adult cardiomyocytes at the injected sites underwent cell division in MI mice. In MI pig the infarcted size was significantly reduced from 40 % to 18 %, and thereby marked improvement of cardiac function and increased muscle mass. Most importantly, our treatment solved the challenge of animal death--all the treated pigs managed to live until their hearts were harvested at day 50. Therefore, our strategy provides clinical conversion advantages and safety for healing damaged hearts and restoring heart function post MI, which will be a powerful tool to battle cardiovascular diseases in patients.


Asunto(s)
Proliferación Celular , MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , Animales , MicroARNs/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratones , Porcinos , Hidrogeles/química , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
2.
Gene ; 932: 148898, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209182

RESUMEN

BACKGROUND: Lactic acid (LA) can promote the malignant progression of tumors through the crosstalk with the tumor microenvironment (TME). However, the function of long non-coding RNAs (lncRNAs) related to LA metabolism in Wilms tumor (WT) remains unclear. METHODS: Gene expression data and clinical data of WT patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Through the ESTIMATE algorithm and Pearson correlation analysis, lncRNAs related to tumor immunity and LA metabolism were screened. Subsequently, Cox regression analysis and Lasso Cox regression analysis were used to construct a model. Furthermore, candidate genes were identified and a competitive endogenous RNA (ceRNA) network was conducted to explore the specific mechanism of characteristic genes. Finally, based on the strong clinical relevance of UNC5B-AS1, its expression and function were experimentally verified. RESULTS: The immune score and stromal score were found to be closely related to the prognosis of WT. Eventually, a prognostic model (TME-LA-LM) consisting of 6 lncRNAs was successfully identified. The model demonstrated favorable predictive ability and accuracy, with significant variation in immune infiltration and drug susceptibility observed between risk groups. Additionally, the study revealed the involvement of 2 candidate genes and 5 microRNAs (miRNAs) in the tumor's development. Notably, UNC5B-AS1 was highly expressed and found to promote the proliferation and migration of tumor cells. CONCLUSION: This study, for the first time, elucidated the prognostic signatures of WT using lncRNAs related to TME and LA metabolism. The fundings of this research offer valuable insights for future studies on immunotherapy, personalized chemotherapy and mechanism research.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Ácido Láctico , ARN Largo no Codificante , Microambiente Tumoral , Tumor de Wilms , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Microambiente Tumoral/genética , Ácido Láctico/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Pronóstico , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Redes Reguladoras de Genes , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
3.
Biomaterials ; 313: 122775, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241549

RESUMEN

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Nanopartículas , Infarto del Miocardio/terapia , Animales , Nanopartículas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Recuperación de la Función , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones , Microburbujas , Ondas Ultrasónicas
4.
Biomaterials ; 312: 122712, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39098305

RESUMEN

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Asunto(s)
Liposomas , MicroARNs , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Animales , Humanos , Liposomas/química , MicroARNs/genética , MicroARNs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Femenino , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Ratones , Aptámeros de Nucleótidos/química , Preparaciones de Acción Retardada/química , Interferencia de ARN , Pez Cebra
5.
Mol Cell Endocrinol ; 592: 112348, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218056

RESUMEN

The developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging. This led to the identification of commonly or inversely differentially expressed targets in early life and aging, revealing dysregulated pathways related to the immune system, stress, muscle contraction, tight junctions, and hemostasis. We identified three miRNAs (miR-378a-3p, miR-378a-5p, let-7a-5p) that regulate four proteins (ACTN4, PPIA, HSPA5, CALM1) as probable epigenetic lung marks generated by MPR. In conclusion, MPR impacts the lungs early in life, increasing the possibility of long-lasting negative outcomes for respiratory disorders in the offspring.


Asunto(s)
Pulmón , MicroARNs , Proteómica , Animales , Femenino , Pulmón/metabolismo , Masculino , Proteómica/métodos , Embarazo , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Dieta con Restricción de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Longevidad/genética , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética
6.
J Biochem Mol Toxicol ; 38(9): e23833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243199

RESUMEN

Osteosarcoma (OS) is the most frequent bone malignancy in humans. Previous evidence suggest that circ_0032463 is an oncogenic circular RNA (circRNA) in various cancers, including OS. However, the molecular mechanism of circ_0032463 involved in OS is still unclear. Circ_0032463, microRNA-145-5p (miR-145-5p), GDNF receptor alpha 1 (GFRA1), and Wilms tumor 1-associated protein (WTAP) levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, invasion, and angiogenesis were analyzed using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Western blot analysis was performed to measure matrix metalloproteinase 2 (MMP2), MMP9, GFRA1, and WTAP protein levels. Binding between miR-145-5p and circ_0032463 or GFRA1 was confirmed using a dual-luciferase reporter and pull-down assay. The biological role of circ_0032463 on OS cell growth was also analyzed using a xenograft tumor model in vivo. Methylated RNA immunoprecipitation assay validated the interaction between WTAP and circ_0032463. Circ_0032463, GFRA1, and WTAP levels were increased, and miR-145-5p was decreased in OS tissues and cells. Circ_0032463 deficiency might hinder OS cell proliferation, migration, invasion, angiogenesis, and promote apoptosis in vitro. Mechanically, circ_0032463 worked as a miR-145-5p sponge to increase GFRA1 expression. Repression of circ_0032463 knockdown on tumor cell growth was proved in vivo. Besides, N6-methyladenosine (m6A) modification facilitates the biogenesis of circ_0032463. Taken together, m6A-mediated biogenesis of circ_0032463 facilitates OS cell malignant biological behavior partly via regulating the miR-145-5p/GFRA1 axis, suggesting a promising molecular marker for OS treatment.


Asunto(s)
Neoplasias Óseas , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , MicroARNs , Osteosarcoma , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Animales , Línea Celular Tumoral , Ratones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Regulación Neoplásica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ratones Desnudos , Masculino , Ratones Endogámicos BALB C , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Adenosina/análogos & derivados , Proteínas de Ciclo Celular
7.
J Biochem Mol Toxicol ; 38(9): e23846, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243204

RESUMEN

As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.


Asunto(s)
Proliferación Celular , Glucólisis , MicroARNs , Osteosarcoma , ARN Circular , Factor de Transcripción 4 , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Transducción de Señal
8.
FASEB J ; 38(17): e70022, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39250282

RESUMEN

Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by widespread fibrosis in the skin and several internal organs. Nudix Hydrolase 21 (NUDT2 or CFIm25) downregulation in fibroblasts is known to play detrimental roles in both skin and lung fibrosis. This study aims to investigate the upstream mechanisms that lead to NUDT21 repression in skin fibrosis. We identified transforming growth factor ß (TGFß1) as the primary cytokine that downregulated NUDT21 in normal skin fibroblasts. In the bleomycin-induced dermal fibrosis model, consistent with the peak activation of TGFß1 at the late fibrotic stage, NUDT21 was downregulated at this stage, and delayed NUDT21 knockdown during this fibrotic phase led to enhanced fibrotic response to bleomycin. Further investigation suggested TGFß downregulated NUDT21 through microRNA (miRNA) 181a and 181b induction. Both miR-181a and miR-181b were elevated in bleomycin-induced skin fibrosis in mice and primary fibroblasts isolated from SSc patients, and they directly targeted NUDT21 and led to its downregulation in skin fibroblasts. Functional studies demonstrated that miR-181a and miR-181b inhibitors attenuated bleomycin-induced skin fibrosis in mice in association with decreased NUDT21 expression, while miR-181a and miR-181b mimics promoted bleomycin-induced fibrosis. Overall, these findings suggest a novel role for miR-181a/b in SSc pathogenesis by repressing NUDT21 expression.


Asunto(s)
Bleomicina , Fibroblastos , Fibrosis , MicroARNs , Esclerodermia Sistémica , Piel , MicroARNs/genética , MicroARNs/metabolismo , Animales , Humanos , Ratones , Fibrosis/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/inducido químicamente , Bleomicina/toxicidad , Bleomicina/efectos adversos , Piel/patología , Piel/metabolismo , Femenino , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Ratones Endogámicos C57BL , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células Cultivadas , Regulación hacia Abajo
9.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250529

RESUMEN

miR-31, an evolutionarily conserved microRNA, has been studied in different contexts, such as myogenesis, skeletogenesis and cancer; however, its role in post-transcriptional regulation during development is still unclear. In a new study, Jia Song and colleagues find that miR-31 regulates local translation of cytoskeletal remodelling transcripts at the mitotic spindle to ensure proper cell division during sea urchin embryogenesis. To find out more about the story behind the paper, we caught up with first author Carolyn Remsburg and Jia Song, Associate Professor at the University of Delaware, USA.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Historia del Siglo XXI , Humanos , Biología Evolutiva , Erizos de Mar/embriología , Erizos de Mar/genética , Desarrollo Embrionario/genética , Historia del Siglo XX
10.
Kaohsiung J Med Sci ; 40(9): 789-800, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252576

RESUMEN

We investigated the potential correlation between miR-223 and NAcHT, LRR, and PYd domain-containing protein 3 (NLRP3) in the context of renal ischemia-reperfusion injury (RIRI), which is a leading cause of acute renal failure with significant mortality rates. Additionally, miR-223 has been implicated in renal inflammation, further highlighting its relevance to this study. C57BL/6 male mice were used as RIRI models. After successful modeling, pathological examinations and serum creatinine and miR-223 levels were tested. Pro-inflammatory cytokine (IL-1ß, IL-6, IL-8, NLPR3, TLR4) expression was detected in mice by western blot (kidney tissue) and enzyme-linked immunosorbent assay (serum). HK-2 cells were used for in vitro experiments. A hypoxia/reoxygenation (H/R) model was used, and miR-223 and pro-inflammatory cytokine levels were detected using PCR and western blot assays, respectively. A dual-luciferase reporter assay was conducted to confirm the binding of miR-223 to NLPR3. Next, NLRP3 was knocked down to determine whether the anti-inflammatory function of miR-223 is dependent on NLRP3. MiR-223 expression was lower in RIRI mice than in the sham operation group. The level of miR-223 negatively correlated with serum creatinine levels and the severity of tubule injury. Increased proinflammatory cytokine levels in RIRI mice were observed. In vitro, miR-223 alleviated the inflammatory response in H/R treated cells by inhibiting proinflammatory cytokines. Dual-luciferase reporter and western blot assays confirmed the binding of miR-223 to NLRP3. NLRP3 knockdown reversed the anti-inflammatory effects of miR-223 in HK-2 cells. MiR-223 plays an anti-inflammatory role in RIRI by targeting NLRP3 to repress pro-inflammatory factors.


Asunto(s)
Riñón , Ratones Endogámicos C57BL , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Daño por Reperfusión , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Masculino , Riñón/metabolismo , Riñón/patología , Humanos , Ratones , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Línea Celular , Citocinas/metabolismo
11.
Planta ; 260(4): 89, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254898

RESUMEN

Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.


Asunto(s)
MicroARNs , Plantas , ARN de Planta , Metabolismo Secundario , Plantas/metabolismo , Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Cell Biochem Funct ; 42(7): e4116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233464

RESUMEN

Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.


Asunto(s)
Apelina , Neoplasias , Humanos , Apelina/metabolismo , Apelina/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , ARN no Traducido/metabolismo , ARN no Traducido/genética , MicroARNs/metabolismo , MicroARNs/genética , Progresión de la Enfermedad , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Animales
13.
Front Endocrinol (Lausanne) ; 15: 1422279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239092

RESUMEN

Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin deficiency due to autoimmune loss of pancreatic ß cells. In addition to ß cell destruction, it is now accepted that ß cell stress and dysfunction, such as senescence, plays a crucial role in the development of the disease. Accumulation of senescent ß cells occurs during development of T1D in humans and contributes to the progression of T1D in the nonobese diabetic (NOD) mouse model. Senescent ß cells are thought to exacerbate the inflammatory response within the islets by production and secretion of senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) from ß cells have been shown to carry protein and microRNAs (miRNAs), influencing cellular signaling and may contribute to the development of T1D but it remains to be addressed how senescence impacts ß cell EV cargo. In this minireview, we discuss emerging evidence that EV cargo proteins and miRNAs associated with senescence could contribute to the development of T1D and could suggest potential biomarkers and therapeutic targets for the regulation of SASP and elimination of senescent ß cells in T1D. Future investigation exploring the intricate relationship between ß cell senescence, EVs and miRNAs could pave the way for the development of novel diagnostic techniques and therapeutic interventions.


Asunto(s)
Senescencia Celular , Diabetes Mellitus Tipo 1 , Vesículas Extracelulares , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Humanos , Vesículas Extracelulares/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Animales , MicroARNs/metabolismo , MicroARNs/genética , Fenotipo Secretor Asociado a la Senescencia
14.
Int J Med Sci ; 21(11): 2081-2093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239539

RESUMEN

Insulin resistance is the primary contributor to the disruption in glucose homeostasis in the body, playing a significant causative role in many metabolic diseases. Insulin resistance is characterized by compensatory insulin secretion and reduced insulin responsiveness in target organs. Dysregulation of the interaction between insulin-secreting cells and insulin-responsive target organs is an important factor driving the progression of insulin resistance. Circulating endocrine hormones are important mediators mediating the interaction between insulin-secreting cells and insulin-responsive target organs. In addition to the classical hormones secreted by endocrine glands and organ-specific hormones secreted by metabolism-related organs (adipose tissue, muscle, liver, etc.), extracellular vesicles have been recognized as a novel class of endocrine hormones with a complex composition. Extracellular vesicles can transport signaling molecules, such as miRNAs and LncRNAs, to vital organs related to insulin resistance, in a manner akin to conventional hormones. The significant role in regulating the development of insulin resistance underscores the increasing interest in extracellular vesicles as essential contributors to this process. In this review, we summarize the three types of hormones (classical hormones, organokines and extracellular vesicles) that play a regulatory role in insulin resistance, and focus on the novel endocrine hormones, extracellular vesicles, to elaborate the mechanism of extracellular vesicles' regulation of insulin resistance progress from two aspects: the impact on insulin-secreting cells and the influence on insulin-responsive target organs. In addition, this paper outlines the clinical applications of extracellular vesicles in insulin resistance. A comprehensive understanding of the regulatory mechanisms and diagnostic status of the inter-organ network in insulin resistance has great potential to advance targeted therapeutic interventions and diagnostic markers, thereby benefiting both the prevention and treatment of insulin resistance.


Asunto(s)
Vesículas Extracelulares , Resistencia a la Insulina , Humanos , Vesículas Extracelulares/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Hormonas/metabolismo , Animales , Tejido Adiposo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética
15.
Front Cell Infect Microbiol ; 14: 1405689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239635

RESUMEN

Introduction: Coxsackievirus A6 (CV-A6) has emerged as the predominant epidemic strain responsible for hand, foot and mouth disease (HFMD). CV-A6 infection can result in severe clinical manifestations, including encephalitis, meningitis, and potentially life-threatening central nervous system disorders. Our previous research findings demonstrated that neonatal mice infected with CV-A6 exhibited limb weakness, paralysis, and ultimately succumbed to death. However, the underlying mechanism of CV-A6-induced nervous system injury remains elusive. Numerous reports have highlighted the pivotal role of miRNAs in various viral infections. Methods: Separately established infection and control groups of mice were used to create miRNA profiles of the brain tissues before and after CV-A6 transfection, followed by experimental verification, prediction, and analysis of the results. Results: At 2 days post-infection (dpi), 4 dpi, and 2dpi vs 4dpi, we identified 175, 198 and 78 significantly differentially expressed miRNAs respectively using qRT-PCR for validation purposes. Subsequently, we predicted target genes of these differentially expressed miRNAs and determined their potential targets through GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Finally, we verified the miRNA-mRNA pairing via double luciferase experiments while confirming functional enrichment of target genes through Western Blotting analyses. Discussion: The results from this study suggest that transcriptional regulation, neuronal necrosis, pro-inflammatory cytokine release, and antiviral immunity are all implicated in the pathogenesis of central nervous system injury in mice infected with CV-A6. Brain injury resulting from CV-A6 infection may involve multiple pathways, including glial cell activation, neuronal necrosis, synaptic destruction, degenerative diseases of the nervous system. It can even encompass destruction of the blood-brain barrier, leading to central nervous system injury. The dysregulated miRNAs and signaling pathways discovered in this study provide valuable insights for further investigations into the pathogenesis of CV-A6.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Encéfalo/virología , Encéfalo/patología , Encéfalo/metabolismo , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/genética , Lesiones Encefálicas/virología , Lesiones Encefálicas/genética , Perfilación de la Expresión Génica , Enterovirus Humano A/genética , Enterovirus Humano A/patogenicidad , Enterovirus/genética , Enterovirus/patogenicidad , Enfermedad de Boca, Mano y Pie/virología
16.
Commun Biol ; 7(1): 1100, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244636

RESUMEN

PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/ß-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2's essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Animales , Ratones , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mesodermo/metabolismo , Mesodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Wnt , Endodermo/metabolismo , Endodermo/embriología , MicroARNs/metabolismo , MicroARNs/genética
17.
Pathol Res Pract ; 262: 155572, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226804

RESUMEN

Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Apoptosis/genética , Femenino , Transducción de Señal/genética
18.
Pathol Res Pract ; 262: 155576, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232286

RESUMEN

Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.


Asunto(s)
Fibroblastos Asociados al Cáncer , Progresión de la Enfermedad , Exosomas , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Exosomas/metabolismo , Exosomas/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Comunicación Celular , MicroARNs/genética , MicroARNs/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
19.
Cell Mol Life Sci ; 81(1): 384, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235466

RESUMEN

Bioenergy decline occurs with reperfusion following acute ischemic stroke. However, the molecular mechanisms that limit energy metabolism and their impact on post-stroke cognitive and emotional complications are still unclear. In the present study, we demonstrate that the p53 transcriptional response is responsible for neuronal adenosine triphosphate (ATP) deficiency and progressively neuropsychiatric disturbances, involving the downregulation of mitochondrial voltage-dependent anion channels (VDACs). Neuronal p53 transactivated the promoter of microRNA-183 (miR-183) cluster, thereby upregulating biogenesis of miR-183-5p (miR-183), miR-96-5p (miR-96), and miR-182-5p. Both miR-183 and miR-96 directly targeted and post-transcriptionally suppressed VDACs. Neuronal ablation of p53 protected against ATP deficiency and neurological deficits, whereas post-stroke rescue of miR-183/VDAC signaling reversed these benefits. Interestingly, cyclin-dependent kinase 9 (CDK9) was found to be enriched in cortical neurons and upregulated the p53-induced transcription of the miR-183 cluster in neurons after ischemia. Post-treatment with the CDK9 inhibitor oroxylin A promoted neuronal ATP production mainly through suppressing the miR-183 cluster/VDAC axis, further improved long-term sensorimotor abilities and spatial memory, and alleviated depressive-like behaviors in mice following stroke. Our findings reveal an intrinsic CDK9/p53/VDAC pathway that drives neuronal bioenergy decline and underlies post-stroke cognitive impairment and depression, thus highlighting the therapeutic potential of oroxylin A for better outcomes.


Asunto(s)
Metabolismo Energético , Ratones Endogámicos C57BL , MicroARNs , Neuronas , Transducción de Señal , Accidente Cerebrovascular , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Adenosina Trifosfato/metabolismo
20.
Sci Rep ; 14(1): 20731, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237660

RESUMEN

Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) is the leading cause of childhood chronic kidney failure and a significant cause of chronic kidney disease in adults. Genetic and environmental factors are known to influence CAKUT development, but the currently known disease mechanism remains incomplete. Our goal is to identify affected pathways and networks in CAKUT, and thereby aid in getting a better understanding of its pathophysiology. With this goal, the miRNome, peptidome, and proteome of over 30 amniotic fluid samples of patients with non-severe CAKUT was compared to patients with severe CAKUT. These omics data sets were made findable, accessible, interoperable, and reusable (FAIR) to facilitate their integration with external data resources. Furthermore, we analysed and integrated the omics data sets using three different bioinformatics strategies: integrative analysis with mixOmics, joint dimensionality reduction and pathway analysis. The three bioinformatics analyses provided complementary features, but all pointed towards an important role for collagen in CAKUT development and the PI3K-AKT signalling pathway. Additionally, several key genes (CSF1, IGF2, ITGB1, and RAC1) and microRNAs were identified. We published the three analysis strategies as containerized workflows. These workflows can be applied to other FAIR data sets and help gaining knowledge on other rare diseases.


Asunto(s)
Colágeno , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Colágeno/metabolismo , Colágeno/genética , Biología Computacional/métodos , MicroARNs/genética , MicroARNs/metabolismo , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/metabolismo , Femenino , Proteoma/metabolismo , Líquido Amniótico/metabolismo , Sistema Urinario/metabolismo , Multiómica , Anomalías Urogenitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA