Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.177
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 81, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285193

RESUMEN

Recent evidence indicates that liver cirrhosis (LC) is a reversible condition, but there is no established intervention against liver fibrosis. Although the gut microbiota is considered involved in the pathogenesis of LC, the underlying mechanisms remain unclear. Although the antibiotic, rifaximin (RFX), is effective for hepatic encephalopathy (HE) with LC, the impact of RFX on intestinal bacteria is unknown. We investigated the bacterial compositions along the GI tract under RFX treatment using a murine LC model. RFX improved liver fibrosis and hyperammonemia and altered the bacterial composition in the small intestine. The efficacy of RFX was associated with increases in specific bacterial genera, including Akkermansia. Administration of a commensal strain of Akkermansia muciniphila improved liver fibrosis and hyperammonemia with changing bacterial composition in the small intestine. This study proposed a new concept "small intestine-liver axis" in the pathophysiology of LC and oral A. muciniphila administration is a promising microbial intervention.


Asunto(s)
Akkermansia , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Intestino Delgado , Cirrosis Hepática , Rifaximina , Animales , Ratones , Intestino Delgado/microbiología , Intestino Delgado/patología , Cirrosis Hepática/microbiología , Rifaximina/uso terapéutico , Rifaximina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Verrucomicrobia , Ratones Endogámicos C57BL , Hígado/patología , Hígado/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , ARN Ribosómico 16S/genética
3.
Food Res Int ; 195: 114993, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277254

RESUMEN

Recent studies have shown that 1-oleo-2-palmito-3-linoleyl glycerol (OPL) is the most abundant triacylglycerol in human breast milk in China. Epidemiologic studies have shown that sn-2 palmitate improves the absorption of fatty acids and calcium in infants. However, there have been few studies of the specific mechanism by which OPL affects intestinal function. In the present study, we have characterized the effects of various levels of OPL supplementation on the development of the intestinal epithelium and the intestinal microbiota of neonatal mice. OPL supplementation increased the body masses and intestinal lengths of weaned mice and promoted defecation. These positive effects were related to the effect of OPL to promote the development of intestinal villi and crypts. OPL increased the expression of the intestinal stem cell markers Olfm4 and Sox9 in the jejunum and ileum, which promoted their differentiation into goblet cells and Paneth cells. It also promoted the integrity of the epithelial barrier by increasing the secretion of mucin 2 and lysozyme 1 and the expression of the tight junction proteins occludin, ZO1, claudin 2, and claudin 3. More importantly, we found that low dose-OPL promotes the transformation of the intestinal microbiota of neonatal mice to the mature state in 3-month-old mice, increases the proportion of Firmicutes, and reduces the proportion of Bacteroidota. The proportions of anaerobic genera of bacteria, such as Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ligilactobacillus, and Bifidobacterium were higher, as were the key producers of short-chain fatty acids, such as Bacteroides and Blautia. OPL also increased the butyric acid content of the feces, which significantly correlated with the abundance of Lactobacillus. High-dose OPL tended to be more effective at promoting defecation and the development of the villi and crypts, but these effects did not significantly differ from those achieved using the lower dose. A low dose of OPL was more effective at increasing the butyric acid content and causing the maturation of microbes. In summary, the OPL supplementation of newborn mice promotes the establishment of the intestinal epithelial layer structure and barrier function, and also promotes the transformation of the intestinal microbiota to a mature state. This study lays a theoretical foundation for the inclusion of OPL in infant formula and provides a scientific basis for the development of intestinal health products.


Asunto(s)
Animales Recién Nacidos , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/microbiología , Mucosa Intestinal/metabolismo , Masculino , Glicéridos/metabolismo , Ratones Endogámicos C57BL , Ácidos Oléicos
4.
Proc Natl Acad Sci U S A ; 121(33): e2318627121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102547

RESUMEN

Johne's disease (JD), a chronic, infectious enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), affects wild and domestic ruminants. There is no cure or effective prevention, and current vaccines have substantial limitations, leaving this disease widespread in all substantial dairy industries causing economic, and animal welfare implications. Mycobacteriophages (MPs) have been gaining interest in recent years and are proposed as a promising solution to curtailing MAP infection. Using a well-validated infection model, we have demonstrated the preventative potential of MPs to protect dairy calves against MAP infection. Calves were supplemented daily with a phage cocktail from birth till weaning at 2 m of age and inoculated with MAP at 2 wk of age. Infection status was measured for 4.5 mo through blood, fecal, and postmortem tissue samples. Our findings highlight the remarkable efficacy of orally administered MPs. Notably, fecal shedding of MAP was entirely eliminated within 10 wk, in contrast to the infected control group where shedding continued for the entirety of the trial period. Postmortem tissue culture analysis further supported the effectiveness of MPs, with only 1 out of 6 animals in the phage-treated group testing positive for MAP colonized tissues compared to 6 out of 6 animals in the infected control group. Additionally, plaque assay results demonstrated the ability of phages to persist within the intestinal tract. Collectively, these results underscore the potential of orally administered MP cocktails as a highly effective intervention strategy to combat JD in dairy calves and by extension in the dairy industry.


Asunto(s)
Enfermedades de los Bovinos , Heces , Intestino Delgado , Micobacteriófagos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Paratuberculosis/prevención & control , Paratuberculosis/microbiología , Bovinos , Heces/microbiología , Heces/virología , Micobacteriófagos/fisiología , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Intestino Delgado/microbiología , Intestino Delgado/virología , Derrame de Bacterias
5.
Nutrients ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125359

RESUMEN

OBJECTIVE: This study evaluated anthropometric, biochemical, and inflammatory biomarkers, as well as dietary intake in Brazilian children diagnosed with small intestinal bacterial overgrowth (SIBO) and compared them with their counterparts without SIBO. METHODS: This was a cross-sectional study with 106 children aged 7 to 10 years. A glucose-hydrogen breath test was performed to diagnose small intestinal bacterial overgrowth (SIBO). Anthropometric and dietary characteristics were assessed. Blood samples were collected and serum biochemical parameters and cytokines were measured. RESULTS: The occurrence of SIBO was 13.2%. Age, BMI, BMI/age WC, BFP, sex and biochemical markers were similar between SIBO-positive and SIBO-negative children (p > 0.05). High consumption of ultra-processed foods tended to be higher in SIBO-positive compared to SIBO-negative children (47.8 ± 8.2 vs. 42.6 ± 9.5, p = 0.06). Serum levels of IL-17 were higher in SIBO-positive than in SIBO-negative children [69.5 (5.4-125.7) vs. 53.4 (2.3-157.7), p = 0.03], while serum levels of IL-10 were lower in SIBO-positive than in SIBO-negative children [2.3 (0.6-7.2) vs. 5.7 (0.5-30.8), p = 0.04]. Finally, in a logistic regression adjusted for sex, BMI and age, consumption of ultra-processed foods (p = 0.03) and IL-6 levels (p = 0.003) were found to contribute to the occurrence of SIBO. CONCLUSION: this study identified for the first time an occurrence of 13% of SIBO in children living in the northeastern region of Brazil and showed that consumption of ultra-processed foods and serum levels of IL-6 may influence the occurrence of the SIBO in the pediatrics population.


Asunto(s)
Biomarcadores , Alimentos Procesados , Intestino Delgado , Niño , Femenino , Humanos , Masculino , Biomarcadores/sangre , Síndrome del Asa Ciega/sangre , Síndrome del Asa Ciega/diagnóstico , Brasil/epidemiología , Pruebas Respiratorias , Estudios Transversales , Citocinas/sangre , Dieta , Inflamación/sangre , Intestino Delgado/microbiología
6.
Dtsch Med Wochenschr ; 149(18): 1071-1079, 2024 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-39208859

RESUMEN

SIBO (small intestinal bacterial overgrowth) is defined by bacterial overgrowth or colonization of the small intestine in combination with gastrointestinal symptoms such as bloating, nausea, pain, diarrhoea, malabsorption and food intolerance. SIBO can be caused by various mechanisms such as reduced intestinal motility, altered gastrointestinal anatomy, reduced gastric acid or pancreatic enzyme production, altered bile acid metabolism, or immune defects. Accordingly, SIBO often develops secondary to different underlying diseases.Diet has a fundamental influence on the composition of the intestinal microbiome and is therefore also a potential pathomechanism in SIBO. Furthermore, food intolerances are common in SIBO patients. However, both aspects have so far been insufficiently investigated. Nevertheless, elemental diets, carbohydrate-reduced diets, as well as pre- and probiotics are potential therapy options.This article provides a summary of current knowledge on the pathophysiology, diagnosis and treatment of SIBO, with particular emphasis on the role of nutrition and the microbiome.


Asunto(s)
Síndrome del Asa Ciega , Humanos , Síndrome del Asa Ciega/terapia , Síndrome del Asa Ciega/diagnóstico , Intestino Delgado/microbiología , Probióticos/uso terapéutico , Microbiota/fisiología , Microbioma Gastrointestinal/fisiología
7.
Pediatr Pulmonol ; 59 Suppl 1: S70-S80, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39105345

RESUMEN

People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.


Asunto(s)
Fibrosis Quística , Disbiosis , Microbioma Gastrointestinal , Intestino Delgado , Probióticos , Fibrosis Quística/microbiología , Humanos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Disbiosis/microbiología , Intestino Delgado/microbiología , Prebióticos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética
8.
Food Funct ; 15(16): 8521-8543, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39058305

RESUMEN

Polyphenols in mulberry fruit have potential anti-diabetic effects by targeting the gut microbiota. This study investigated how mulberry polyphenols (MPs) influence the microbiota of the small and large intestines and their effects on type 2 diabetes symptoms. The results showed lower microbiota densities in the small intestine. MP treatments improved microbiota richness and diversity in both intestines, similar to metformin. In particular, at a 400 mg kg-1 dose, mulberry polyphenols decreased Firmicutes, Lactobacillus, and Bacilli, while increasing Bacteroidetes, leading to elevated propionate and butyrate levels. Less abundant small intestinal microbiota, like Enterobacterales, Mycoplasmatales, Enterobacteriaceae, and Ureaplasma, were involved in regulating blood glucose and insulin levels. Functional analysis suggested that mulberry polyphenols reshaped the small intestinal microbiota to influence blood glucose balance via unknown pathways, while in the large intestine, they primarily affected blood glucose through carbohydrate transport and metabolism. Based on their ability to regulate the composition of intestinal flora, MPs likely improved glucose homeostasis by enhancing glucose utilization, supporting pancreatic tissue health, and increasing serum antioxidant capacity. However, the specific mechanisms underlying this potential are yet to be fully explored. This study provides new insights into the influence of MPs on remodeling the microbiota residing in both the small and large intestines, which thereby may contribute to the improvement of the pathophysiology of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Polifenoles , Morus/química , Polifenoles/farmacología , Polifenoles/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Frutas/química , Glucemia/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Humanos
9.
Cell Host Microbe ; 32(8): 1315-1330.e5, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39043190

RESUMEN

Bariatric surgical procedures such as sleeve gastrectomy (SG) provide effective type 2 diabetes (T2D) remission in human patients. Previous work demonstrated that gastrointestinal levels of the bacterial metabolite lithocholic acid (LCA) are decreased after SG in mice and humans. Here, we show that LCA worsens glucose tolerance and impairs whole-body metabolism. We also show that taurodeoxycholic acid (TDCA), which is the only bile acid whose concentration increases in the murine small intestine post-SG, suppresses the bacterial bile acid-inducible (bai) operon and production of LCA both in vitro and in vivo. Treatment of diet-induced obese mice with TDCA reduces LCA levels and leads to microbiome-dependent improvements in glucose handling. Moreover, TDCA abundance is decreased in small intestinal tissue from T2D patients. This work reveals that TDCA is an endogenous inhibitor of LCA production and suggests that TDCA may contribute to the glucoregulatory effects of bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Ácidos y Sales Biliares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intestino Delgado , Ratones Endogámicos C57BL , Obesidad , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratones , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Ácidos y Sales Biliares/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Obesidad/cirugía , Obesidad/metabolismo , Obesidad/microbiología , Masculino , Ácido Litocólico/metabolismo , Glucosa/metabolismo
10.
J Nutr Biochem ; 133: 109706, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39053859

RESUMEN

The oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174. Our results show that both spores and cells of SF174 were effective in preventing the fructose-induced metabolic damage to the gut, namely establishment of "leaky gut", inflammation and oxidative damage, thus preserving gut function. Our results also suggest that vegetative cells and germination-derived cells metabolize part of the ingested fructose at the ileum level.


Asunto(s)
Fructosa , Microbioma Gastrointestinal , Probióticos , Esporas Bacterianas , Animales , Fructosa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/farmacología , Masculino , Clostridiales , Ratas , Intestino Grueso/microbiología , Intestino Grueso/metabolismo , Ratas Wistar , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/efectos de los fármacos
11.
Microbiome ; 12(1): 142, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080725

RESUMEN

BACKGROUND: The establishment of microbial communities in neonatal mammals plays a pivotal role in shaping their immune responses to infections and other immune-related conditions. This process is influenced by a combination of endogenous and exogenous factors. Previously, we reported that depletion of CD71 + erythroid cells (CECs) results in an inflammatory response to microbial communities in newborn mice. RESULTS: Here, we systemically tested this hypothesis and observed that the small intestinal lamina propria of neonatal mice had the highest frequency of CECs during the early days of life. This high abundance of CECs was attributed to erythropoiesis niches within the small intestinal tissues. Notably, the removal of CECs from the intestinal tissues by the anti-CD71 antibody disrupted immune homeostasis. This disruption was evident by alteration in the expression of antimicrobial peptides (AMPs), toll-like receptors (TLRs), inflammatory cytokines/chemokines, and resulting in microbial dysbiosis. Intriguingly, these alterations in microbial communities persisted when tested 5 weeks post-treatment, with a more notable effect observed in female mice. This illustrates a sex-dependent association between CECs and neonatal microbiome modulation. Moreover, we extended our studies on pregnant mice, observing that modulating CECs substantially alters the frequency and diversity of their microbial communities. Finally, we found a significantly lower proportion of CECs in the cord blood of pre-term human newborns, suggesting a potential role in dysregulated immune responses to microbial communities in the gut. CONCLUSIONS: Our findings provide novel insights into pivotal role of CECs in immune homeostasis and swift adaptation of microbial communities in newborns. Despite the complexity of the cellular biology of the gut, our findings shed light on the previously unappreciated role of CECs in the dialogue between the microbiota and immune system. These findings have significant implications for human health. Video Abstract.


Asunto(s)
Animales Recién Nacidos , Antígenos CD , Células Eritroides , Microbioma Gastrointestinal , Receptores de Transferrina , Animales , Femenino , Ratones , Embarazo , Antígenos CD/metabolismo , Células Eritroides/inmunología , Receptores de Transferrina/metabolismo , Masculino , Simbiosis , Disbiosis/microbiología , Humanos , Ratones Endogámicos C57BL , Intestino Delgado/microbiología , Intestino Delgado/inmunología
12.
World J Gastroenterol ; 30(24): 3044-3047, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983964

RESUMEN

We comment here on the article by Stefanolo et al entitled "Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet", published in the World Journal of Gastroenterology. Celiac disease is a well-recognized systemic autoimmune disorder. In genetically susceptible people, the most evident damage is located in the small intestine, and is caused and worsened by the ingestion of gluten. For that reason, celiac patients adopt a gluten-free diet (GFD), but it has some limitations, and it does not prevent re-exposure to gluten. Research aims to develop adjuvant therapies, and one of the most studied alternatives is supplementation with Aspergillus niger prolyl endopeptidase protease (AN-PEP), which is able to degrade gluten in the stomach, reducing its concentration in the small intestine. The study found a high adherence to the GFD, but did not address AN-PEP as a gluten immunogenic peptide reducer, as it was only tested in patients following a GFD and not in gluten-exposing conditions. This study opens up new research perspectives in this area and shows that further study is needed to clarify the points that are still in doubt.


Asunto(s)
Aspergillus niger , Enfermedad Celíaca , Dieta Sin Gluten , Glútenes , Prolil Oligopeptidasas , Serina Endopeptidasas , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/enzimología , Humanos , Aspergillus niger/enzimología , Serina Endopeptidasas/metabolismo , Glútenes/inmunología , Glútenes/metabolismo , Glútenes/efectos adversos , Intestino Delgado/microbiología , Intestino Delgado/enzimología , Resultado del Tratamiento
13.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000446

RESUMEN

Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.


Asunto(s)
Dieta , Estado Nutricional , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Síndrome del Asa Ciega/diagnóstico , Anciano , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Microbioma Gastrointestinal
14.
Nutrients ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999800

RESUMEN

In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.


Asunto(s)
Microbioma Gastrointestinal , Mucosa Intestinal , Células Th17 , Destete , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Masculino , Ratones Endogámicos C57BL , Íleon/microbiología , Intestino Delgado/microbiología , Intestino Delgado/efectos de los fármacos , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Linfocitos T Reguladores , Funcion de la Barrera Intestinal
15.
J Med Life ; 17(3): 326-333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39044931

RESUMEN

Intestinal homeostasis involves the collaboration of gut barrier components, such as goblet cells and IgA-microbiota complexes, that are under the control of stress that promotes inflammatory responses addressed primarily in the colon. The aim of this study was to evaluate the effect of stress on mucins, goblet cells, and proinflammatory parameters in the proximal and distal regions of the small intestine. A group (n = 6) of female 8-week-old BALB/c mice underwent board immobilization stress (2 h per day for 4 days) and were sacrificed with isoflurane. Samples from proximal and distal small segments were collected to analyze the following: 1) goblet cells stained with periodic acid-Schiff (PAS) and with alcian blue (AB) to visualize histologically neutral and acidic mucins, respectively; 2) IgA-microbiota complexes identified by flow cytometry in intestinal lavages; and 3) MUC2, MUC5AC, and IL-18 mRNA levels in whole mucosal scrapings by reverse transcription-qPCR. Regarding the unstressed group, in the proximal region of small intestine both PAS+ and AB+ goblet cells were unchanged; however, MUC5AC and IL-18 mRNA levels were increased, and the percentage of IgA-microbiota complexes was reduced. In the distal segment, the number of PAS+ goblet cells was increased, whereas the number of AB+ goblet cells was reduced and did not affect the remaining parameters. The data suggest that stress induces inflammation in the proximal small intestine; these findings may provide an experimental reference for human diseases that may affect the proximal small intestine, such as Crohn's disease, in which stress contributes to the progression of intestinal inflammation or relapse.


Asunto(s)
Células Caliciformes , Intestino Delgado , Ratones Endogámicos BALB C , Mucinas , Animales , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Femenino , Ratones , Células Caliciformes/metabolismo , Células Caliciformes/patología , Mucinas/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Interleucina-18/metabolismo , Mucina 5AC/metabolismo , Estrés Fisiológico , Inmunoglobulina A/metabolismo , Mucina 2/metabolismo , Mucina 2/genética
16.
Front Cell Infect Microbiol ; 14: 1431660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994003

RESUMEN

Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the bacterial population of the small intestine due to an imbalance between the amount of bacteria and the intestinal barrier. Pediatric SIBO presents with a wide spectrum of symptoms, ranging from mild gastrointestinal complaints to malabsorption or malnutrition. Breath tests are commonly used as noninvasive diagnostic tools for SIBO, but a standardized methodology is currently unavailable. Intestinal flora produces methane which slows intestinal transit and increases the contractile activity of small intestine. Emerging literature suggests a correlation between overgrowth of methanogenic bacteria in the intestines and constipation. Treatment of SIBO involves administration of antibacterial therapy in addition to management of underlying conditions and optimal dietary adjustments. However, research on antibiotic treatment for pediatric patients with constipation and SIBO is limited and has yielded conflicting results. In the current review, we summarize the state-of-the-art of the field and discuss previous treatment attempts and currently used regimens for SIBO patients with constipation, with a focus on pediatric populations.


Asunto(s)
Antibacterianos , Estreñimiento , Intestino Delgado , Humanos , Estreñimiento/microbiología , Estreñimiento/tratamiento farmacológico , Niño , Intestino Delgado/microbiología , Antibacterianos/uso terapéutico , Microbioma Gastrointestinal , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Pruebas Respiratorias , Metano/metabolismo , Síndrome del Asa Ciega/diagnóstico , Síndrome del Asa Ciega/tratamiento farmacológico
17.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822376

RESUMEN

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Asunto(s)
Probióticos , Protectores contra Radiación , Esporas Bacterianas , Animales , Probióticos/farmacología , Ratones , Administración Oral , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Protectores contra Radiación/química , Esporas Bacterianas/efectos de la radiación , Traumatismos por Radiación/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/efectos de la radiación , Intestino Delgado/patología , Humanos , Apoptosis/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de la radiación , Intestinos/microbiología , Intestinos/patología , Traumatismos Experimentales por Radiación/patología
18.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928317

RESUMEN

Imbalanced nutrition, such as a high-fat/high-carbohydrate diet, is associated with negative effects on human health. The composition and metabolic activity of the human gut microbiota are closely related to the type of diet and have been shown to change significantly in response to changes in food content and food supplement administration. Alkylresorcinols (ARs) are lipophilic molecules that have been found to improve lipid metabolism and glycemic control and decrease systemic inflammation. Furthermore, alkylresorcinol intake is associated with changes in intestinal microbiota metabolic activity. However, the exact mechanism through which alkylresorcinols modulate microbiota activity and host metabolism has not been determined. In this study, alterations in the small intestinal microbiota (SIM) and the large intestinal microbiota (LIM) were investigated in mice fed a high-fat diet with or without pentadecylresorcinol (C15) supplementation. High-throughput sequencing was applied for jejunal and colonic microbiota analysis. The results revealed that C15 supplementation in combination with a high-fat diet could decrease blood glucose levels. High-throughput sequencing analysis indicated that C15 intake significantly increased (p < 0.0001) the abundance of the probiotic bacteria Akkermansia muciniphila and Bifidobacterium pseudolongum in both the small and large intestines and increased the alpha diversity of LIM (p < 0.05), but not SIM. The preliminary results suggested that one of the mechanisms of the protective effects of alkylresorcinol on a high-fat diet is the modulation of the content of SIM and LIM and metabolic activity to increase the probiotic bacteria that alleviate unhealthy metabolic changes in the host.


Asunto(s)
Akkermansia , Dieta Alta en Grasa , Suplementos Dietéticos , Microbioma Gastrointestinal , Resorcinoles , Animales , Dieta Alta en Grasa/efectos adversos , Resorcinoles/farmacología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Akkermansia/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Intestino Delgado/efectos de los fármacos , Intestino Delgado/microbiología , Intestino Delgado/metabolismo
19.
PLoS One ; 19(6): e0297713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917098

RESUMEN

OBJECTIVE: N-butylphthalide (NBP) is a monomeric compound extracted from natural plant celery seeds, whether intestinal microbiota alteration can modify its pharmacokinetics is still unclear. The purpose of this study is to investigate the effect of intestinal microbiota alteration on the pharmacokinetics of NBP and its related mechanisms. METHODS: After treatment with antibiotics and probiotics, plasma NBP concentrations in SD rats were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The effect of intestinal microbiota changes on NBP pharmacokinetics was compared. Intestinal microbiota changes after NBP treatment were analyzed by 16S rRNA sequencing. Expressions of CYP3A1 mRNA and protein in the liver and small intestine tissues under different intestinal flora conditions were determined by qRT-PCR and Western Blot. KEGG analysis was used to analyze the effect of intestinal microbiota changes on metabolic pathways. RESULTS: Compared to the control group, the values of Cmax, AUC0-8, AUC0-∞, t1/2 in the antibiotic group increased by 56.1% (P<0.001), 56.4% (P<0.001), 53.2% (P<0.001), and 24.4% (P<0.05), respectively. In contrast, the CL and Tmax values decreased by 57.1% (P<0.001) and 28.6% (P<0.05), respectively. Treatment with antibiotics could reduce the richness and diversity of the intestinal microbiota. CYP3A1 mRNA and protein expressions in the small intestine of the antibiotic group were 61.2% and 66.1% of those of the control group, respectively. CYP3A1 mRNA and protein expressions in the liver were 44.6% and 63.9% of those in the control group, respectively. There was no significant change in the probiotic group. KEGG analysis showed that multiple metabolic pathways were significantly down-regulated in the antibiotic group. Among them, the pathways of drug metabolism, bile acid biosynthesis and decomposition, and fatty acid synthesis and decomposition were related to NBP biological metabolism. CONCLUSION: Antibiotic treatment could affect the intestinal microbiota, decrease CYP3A1 mRNA and protein expressions and increase NBP exposure in vivo by inhibiting pathways related to NBP metabolism.


Asunto(s)
Antibacterianos , Benzofuranos , Citocromo P-450 CYP3A , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Ratas , Benzofuranos/farmacocinética , Masculino , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/efectos de los fármacos
20.
Gut Microbes ; 16(1): 2350173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738780

RESUMEN

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , Intestino Delgado , Simbióticos , Humanos , Simbióticos/administración & dosificación , Microbioma Gastrointestinal/fisiología , Masculino , Adulto , Intestino Delgado/microbiología , Intestino Delgado/metabolismo , Femenino , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Heces/microbiología , Adulto Joven , Probióticos/administración & dosificación , Metaboloma , Voluntarios Sanos , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA