Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.028
Filtrar
1.
Prog Mol Biol Transl Sci ; 208: 19-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39266183

RESUMEN

Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.


Asunto(s)
Infecciones Bacterianas , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Humanos , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/genética , Edición Génica , Bacterias/genética
2.
Biochemistry (Mosc) ; 89(7): 1283-1299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39218025

RESUMEN

The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.


Asunto(s)
Infecciones Bacterianas , Inmunidad Innata , Proteínas de Motivos Tripartitos , Humanos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Animales , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Familia de Multigenes
3.
BMC Med Genomics ; 17(1): 183, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982318

RESUMEN

BACKGROUND AND PURPOSE: The association of water loading with several infections remains unclear. Observational studies are hard to investigate definitively due to potential confounders. In this study, we employed Mendelian randomization (MR) analysis to assess the association between genetically predicted whole body water mass (BWM) and several infections. METHODS: BWM levels were predicted among 331,315 Europeans in UK Biobank using 418 SNPs associated with BWM. For outcomes, we used genome-wide association data from the UK Biobank and FinnGen consortium, including sepsis, pneumonia, intestinal infections, urinary tract infections (UTIs) and skin and soft tissue infections (SSTIs). Inverse-variance weighted MR analyses as well as a series of sensitivity analyses were conducted. RESULTS: Genetic prediction of BWM is associated with an increased risk of sepsis (OR 1.34; 95% CI 1.19 to 1.51; P = 1.57 × 10- 6), pneumonia (OR: 1.17; 95% CI 1.08 to 1.29; P = 3.53 × 10- 4), UTIs (OR: 1.26; 95% CI 1.16 to 1.37; P = 6.29 × 10- 8), and SSTIs (OR: 1.57; 95% CI 1.25 to 1.96; P = 7.35 × 10- 5). In the sepsis and pneumonia subgroup analyses, the relationship between BWM and infection was observed in bacterial but not in viral infections. Suggestive evidence suggests that BWM has an effect on viral intestinal infections (OR: 0.86; 95% CI 0.75 to 0.99; P = 0.03). There is limited evidence of an association between BWM levels and bacteria intestinal infections, and genitourinary tract infection (GUI) in pregnancy. In addition, MR analyses supported the risk of BWM for several edematous diseases. However, multivariable MR analysis shows that the associations of BWM with sepsis, pneumonia, UTIs and SSTIs remains unaffected when accounting for these traits. CONCLUSIONS: In this study, the causal relationship between BWM and infectious diseases was systematically investigated. Further prospective studies are necessary to validate these findings.


Asunto(s)
Infecciones Bacterianas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , Infecciones Bacterianas/genética , Femenino , Factores de Riesgo , Masculino , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Sepsis/genética , Sepsis/microbiología
4.
Signal Transduct Target Ther ; 9(1): 174, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39013893

RESUMEN

Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.


Asunto(s)
Antibacterianos , Bacterias , Biopelículas , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos
5.
J Reprod Immunol ; 164: 104274, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865894

RESUMEN

Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Infertilidad Masculina , Espermatogénesis , Espermatozoides , Masculino , Humanos , Infertilidad Masculina/inmunología , Infertilidad Masculina/genética , Infertilidad Masculina/microbiología , Epigénesis Genética/inmunología , Metilación de ADN/inmunología , Espermatozoides/inmunología , Espermatogénesis/genética , Espermatogénesis/inmunología , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética
6.
J Clin Immunol ; 44(5): 124, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758476

RESUMEN

PURPOSES: STAT1 is a transduction and transcriptional regulator that functions within the classical JAK/STAT pathway. In addition to chronic mucocutaneous candidiasis, bacterial infections are a common occurrence in patients with STAT1 gain-of-function (GOF) mutations. These patients often exhibit skewing of B cell subsets; however, the impact of STAT1-GOF mutations on B cell-mediated humoral immunity remains largely unexplored. It is also unclear whether these patients with IgG within normal range require regular intravenous immunoglobulin (IVIG) therapy. METHODS: Eleven patients (harboring nine different STAT1-GOF mutations) were enrolled. Reporter assays and immunoblot analyses were performed to confirm STAT1 mutations. Flow cytometry, deep sequencing, ELISA, and ELISpot were conducted to assess the impact of STAT1-GOF on humoral immunity. RESULTS: All patients exhibited increased levels of phospho-STAT1 and total STAT1 protein, with two patients carrying novel mutations. In vitro assays showed that these two novel mutations were GOF mutations. Three patients with normal total IgG levels received regular IVIG infusions, resulting in effective control of bacterial infections. Four cases showed impaired affinity and specificity of pertussis toxin-specific antibodies, accompanied by reduced generation of class-switched memory B cells. Patients also had a disrupted immunoglobulin heavy chain (IGH) repertoire, coupled with a marked reduction in the somatic hypermutation frequency of switched Ig transcripts. CONCLUSION: STAT1-GOF mutations disrupt B cell compartments and skew IGH characteristics, resulting in impaired affinity and antigen-specificity of antibodies and recurrent bacterial infections. Regular IVIG therapy can control these infections in patients, even those with normal total IgG levels.


Asunto(s)
Linfocitos B , Infecciones Bacterianas , Mutación con Ganancia de Función , Inmunoglobulinas Intravenosas , Factor de Transcripción STAT1 , Humanos , Factor de Transcripción STAT1/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Femenino , Masculino , Niño , Inmunoglobulinas Intravenosas/uso terapéutico , Linfocitos B/inmunología , Adulto , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Preescolar , Adolescente , Adulto Joven , Inmunidad Humoral
7.
mBio ; 15(5): e0342923, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624208

RESUMEN

The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE: Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.


Asunto(s)
Vía de Señalización Hippo , Inmunidad Innata , Macrófagos , Proteínas Serina-Treonina Quinasas , Serina-Treonina Quinasa 3 , Transducción de Señal , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitos/metabolismo , Ratones Noqueados , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/genética , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/inmunología
8.
Mol Plant Pathol ; 25(1): e13417, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279851

RESUMEN

Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Infecciones Bacterianas , ARN Bicatenario/farmacología , Arabidopsis/metabolismo , Silenciador del Gen , Infecciones Bacterianas/genética , Polímeros/metabolismo , Polímeros/farmacología , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Sci Rep ; 13(1): 22554, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110534

RESUMEN

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Asunto(s)
Infecciones Bacterianas , Virosis , Humanos , Virosis/diagnóstico , Virosis/genética , Biomarcadores , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/genética , Cambodia , Australia
11.
J Transl Med ; 21(1): 777, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919720

RESUMEN

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly understood. METHODS: Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecular screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds. RESULTS: We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escherichia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis. CONCLUSION: Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms in septic patients with various bacterial infections, providing insights to inform development of stratified targeted therapies for sepsis.


Asunto(s)
Infecciones Bacterianas , Sepsis , Humanos , Escherichia coli , Epigénesis Genética , Infecciones Bacterianas/genética , Sepsis/genética , Sepsis/microbiología , Transcriptoma
12.
BMC Genomics ; 24(1): 683, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964222

RESUMEN

BACKGROUND: With more than 36,000 valid fish species, teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. NLRC3 subfamily genes, which are specific to fishes, play vital roles in the immune system of teleosts. The evolution of teleosts has been impacted by several whole-genome duplication (WGD) events, which might be a key reason for the expansions of the NLRC3 subfamily, but detailed knowledge of NLRC3 subfamily evolution in the family Sebastidae is still limited. RESULTS: Phylogenetic inference of NLRC3 subfamily protein sequences were conducted to evaluate the orthology of NLRC3 subfamily genes in black rockfish (Sebastes schlegilii), 13 other fish species from the families Sebastidae, Serranidae, Gasterosteidae and Cyclopteridae, and three species of high vertebrates (bird, reptile and amphibian). WGD analyses were used to estimate expansions and contractions of the NLRC3 subfamily, and patterns of expression of NLRC3 subfamily genes in black rockfish following bacterial infections were used to investigate the functional roles of these genes in the traditional and mucosal immune system of the Sebastidae. Different patterns of gene expansions and contractions were observed in 17 fish and other species examined, and one and two whole-genome duplication events were observed in two members of family Sebastidae (black rockfish and honeycomb rockfish, Sebastes umbrosus), respectively. Subsequently, 179 copy numbers of NLRC3 genes were found in black rockfish and 166 in honeycomb rockfish. Phylogenetic analyses corroborated the conservation and evolution of NLRC3 orthologues between Sebastidae and other fish species. Finally, differential expression analyses provided evidence of the immune roles of NLRC3 genes in black rockfish during bacterial infections and gene ontology analysis also indicated other functional roles. CONCLUSIONS: We hypothesize that NLRC3 genes have evolved a variety of different functions, in addition to their role in the immune response, as a result of whole genome duplication events during teleost diversification. Importantly, this study had underscored the importance of sampling across taxonomic groups, to better understand the evolutionary patterns of the innate immunity system on which complex immunological novelties arose. Moreover, the results in this study could extend current knowledge of the plasticity of the immune system.


Asunto(s)
Infecciones Bacterianas , Perciformes , Humanos , Animales , Filogenia , Peces/genética , Perciformes/genética , Genoma , Infecciones Bacterianas/genética , Péptidos y Proteínas de Señalización Intercelular/genética
13.
Stud Health Technol Inform ; 308: 619-632, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007792

RESUMEN

Neurodegenerative diseases remain the most prevalent and unsolved health problems in human society, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The pathogenesis, pathology, and potential clinical treatments of neurodegenerative diseases still require in-depth research. In the wake of the association between pandemics and a growing number of neurodegeneration patients, there has been growing speculation that infections are linked to AD and PD. The Aß peptide is an important causal-related biomarker of AD and is reported to share structural and functional similarities with certain antimicrobial peptides, suggesting that it has a role in eliciting an immune response against microbes. But how neurodegeneration is related to bacterial chronic infection has not been thoroughly investigated. Using the data from genome-wide association studies (GWAS), we performed Mendelian Randomization (MR) and map 7 genes in multiple bacterial infection pathways as exposure, which show a significant association with the outcome of AD or PD. As co-verification, we perform Gene Set Enrichment Analysis (GSEA) on selected genetic variants incorporating their perturb-seq gene list (combining single-cell RNA-seq and CRISPR-based perturbations). We observed clustering of the differentially expressed genes (DEGs) in the upstream and downstream of AD and PD-related KEGG pathways, hence confirming their causal association with AD and PD and providing new perspectives on the true cause of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Infecciones Bacterianas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/complicaciones , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Parkinson/complicaciones , Infecciones Bacterianas/genética , Infecciones Bacterianas/complicaciones , Polimorfismo de Nucleótido Simple
14.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930030

RESUMEN

Bacterial infections often involve virulence factors that play a crucial role in the pathogenicity of bacteria. Accurate detection of virulence factor genes (VFGs) is essential for precise treatment and prognostic management of hypervirulent bacterial infections. However, there is a lack of rapid and accurate methods for VFG identification from the metagenomic data of clinical samples. Here, we developed a Reads-based Virulence Factors Scanner (RVFScan), an innovative user-friendly online tool that integrates a comprehensive VFG database with similarity matrix-based criteria for VFG prediction and annotation using metagenomic data without the need for assembly. RVFScan demonstrated superior performance compared to previous assembly-based and read-based VFG predictors, achieving a sensitivity of 97%, specificity of 98% and accuracy of 98%. We also conducted a large-scale analysis of 2425 clinical metagenomic datasets to investigate the utility of RVFScan, the species-specific VFG profiles and associations between VFGs and virulence phenotypes for 24 important pathogens were analyzed. By combining genomic comparisons and network analysis, we identified 53 VFGs with significantly higher abundances in hypervirulent Klebsiella pneumoniae (hvKp) than in classical K. pneumoniae. Furthermore, a cohort of 1256 samples suspected of K. pneumoniae infection demonstrated that RVFScan could identify hvKp with a sensitivity of 90%, specificity of 100% and accuracy of 98.73%, with 90% of hvKp samples consistent with clinical diagnosis (Cohen's kappa, 0.94). RVFScan has the potential to detect VFGs in low-biomass and high-complexity clinical samples using metagenomic reads without assembly. This capability facilitates the rapid identification and targeted treatment of hvKp infections and holds promise for application to other hypervirulent pathogens.


Asunto(s)
Infecciones Bacterianas , Factores de Virulencia , Humanos , Factores de Virulencia/genética , Metagenoma , Virulencia/genética , Klebsiella pneumoniae/genética , Infecciones Bacterianas/genética
15.
Epigenetics ; 18(1): 2242689, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37731322

RESUMEN

Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.


Asunto(s)
Infecciones Bacterianas , Enfermedades Transmisibles , Humanos , Histonas , Metilación de ADN , ADN , Infecciones Bacterianas/genética
16.
Cell Mol Gastroenterol Hepatol ; 16(6): 985-1009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37660948

RESUMEN

BACKGROUND & AIMS: MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS: Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS: S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS: We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.


Asunto(s)
Infecciones Bacterianas , Mucinas , Animales , Ratones , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/patología , Mucinas/metabolismo , Salmonella typhimurium/metabolismo
17.
Int J Biol Macromol ; 244: 125391, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37321437

RESUMEN

Bacterial infections and related diseases have been a major burden on social public health and economic stability around the world. However, the effective diagnostic methods and therapeutic approaches to treat bacterial infections are still limited. As a group of non-coding RNA, circular RNAs (circRNAs) that were expressed specifically in host cells and played a key regulatory role have the potential to be of diagnostic and therapeutic values. In this review, we systematically summarize the role of circRNAs in common bacterial infections and their potential roles as diagnostic markers and therapeutic targets.


Asunto(s)
Infecciones Bacterianas , ARN Circular , Humanos , ARN Circular/genética , Infecciones Bacterianas/genética
18.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175906

RESUMEN

Vibrio harveyi, a significant opportunistic marine pathogen, has been a challenge to the aquaculture industry, leading to severe economical and production losses. Phage therapy has been an auspicious approach in controlling such bacterial infections in the era of antimicrobial resistance. In this study, we isolated and fully characterized a novel strain-specific phage, vB_VhaS_MAG7, which infects V. harveyi MM46, and tested its efficacy as a therapeutic agent in challenged gilthead seabream larvae. vB_VhaS_MAG7 is a tailed bacteriophage with a double-stranded DNA of 49,315 bp. No genes linked with virulence or antibiotic resistance were harbored in the genome. The phage had a remarkably large burst size of 1393 PFU cell-1 and showed strong lytic ability in in vitro assays. When applied in phage therapy trials in challenged gilthead seabream larvae, vB_VhaS_MAG7 was capable of improving the survival of the larvae up to 20%. Due to its distinct features and safety, vB_VhaS_MAG7 is considered a suitable candidate for applied phage therapy.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Vibrio , Animales , Bacteriófagos/genética , Vibrio/genética , Infecciones Bacterianas/genética , Peces/genética , Genoma Viral
19.
Front Cell Infect Microbiol ; 13: 1160198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153158

RESUMEN

The long non-coding RNAs (lncRNAs) are evolutionarily conserved classes of non-coding regulatory transcripts of > 200 nucleotides in length. They modulate several transcriptional and post-transcriptional events in the organism. Depending on their cellular localization and interactions, they regulate chromatin function and assembly; and alter the stability and translation of cytoplasmic mRNAs. Although their proposed range of functionality remains controversial, there is increasing research evidence that lncRNAs play a regulatory role in the activation, differentiation and development of immune signaling cascades; microbiome development; and in diseases such as neuronal and cardiovascular disorders; cancer; and pathogenic infections. This review discusses the functional roles of different lncRNAs in regulation of host immune responses, signaling pathways during host-microbe interaction and infection caused by obligate intracellular bacterial pathogens. The study of lncRNAs is assuming significance as it could be exploited for development of alternative therapeutic strategies for the treatment of severe and chronic pathogenic infections caused by Mycobacterium, Chlamydia and Rickettsia infections, as well as commensal colonization. Finally, this review summarizes the translational potential of lncRNA research in development of diagnostic and prognostic tools for human diseases.


Asunto(s)
Infecciones Bacterianas , Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Inmunidad
20.
Front Immunol ; 14: 1176966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153604

RESUMEN

The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.


Asunto(s)
Infecciones Bacterianas , MicroARNs , Mariposas Nocturnas , Animales , Humanos , MicroARNs/metabolismo , Interacciones Huésped-Patógeno/genética , Infecciones Bacterianas/genética , Insectos/genética , Insectos/metabolismo , Bacterias/genética , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA