Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.899
Filtrar
1.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
J Ethnopharmacol ; 336: 118721, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39173723

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY: The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS: Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS: NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION: This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.


Asunto(s)
Medicamentos Herbarios Chinos , Mitofagia , Farmacología en Red , Proteínas Quinasas , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Mitofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
3.
J Cereb Blood Flow Metab ; 44(9): 1551-1564, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234984

RESUMEN

Accurate assessment of post-stroke deficits is crucial in translational research. Recent advances in machine learning offer precise quantification of rodent motor behavior post-stroke, yet detecting lesion-specific upper extremity deficits remains unclear. Employing proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, we assessed post-stroke impairments via the Staircase test. Lesion locations were identified using 7 T-MRI. Machine learning was applied to reconstruct forepaw kinematic trajectories and feature analysis was achieved with MouseReach, a new data-processing toolbox. Lesion reconstructions pinpointed ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval alterations were observed, but were unrelated to overall stroke volume. Instead, forepaw slips and relative reaching success correlated with increasing cortical lesion size in both models. Striatal lesion size after MCAO was associated with prolonged reach durations that occurred with delayed symptom onset. Further analysis on the impact of selective serotonin reuptake inhibitors in the PT model revealed no clear treatment effects but replicated strong effect sizes of slips for post-stroke deficit detection. In summary, refined movement analysis unveiled specific deficits in two widely-used mouse stroke models, emphasizing the value of deep behavioral profiling in preclinical stroke research to enhance model validity for clinical translation.


Asunto(s)
Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular , Animales , Ratones , Masculino , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/complicaciones , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Ratones Endogámicos C57BL , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Movimiento/fisiología
4.
Theranostics ; 14(12): 4773-4786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239521

RESUMEN

Gene therapy using a protein-based CRISPR system in the brain has practical limitations due to current delivery systems, especially in the presence of arterial occlusion. To overcome these obstacles and improve stability, we designed a system for intranasal administration of gene therapy for the treatment of ischemic stroke. Methods: Nanoparticles containing the protein-based CRISPR/dCas9 system targeting Sirt1 were delivered intranasally to the brain in a mouse model of ischemic stroke. The CRISPR/dCas9 system was encapsulated with calcium phosphate (CaP) nanoparticles to prevent them from being degraded. They were then conjugated with ß-hydroxybutyrates (bHb) to target monocarboxylic acid transporter 1 (MCT1) in nasal epithelial cells to facilitate their transfer into the brain. Results: Human nasal epithelial cells were shown to uptake and transfer nanoparticles to human brain endothelial cells with high efficiency in vitro. The intranasal administration of the dCas9/CaP/PEI-PEG-bHb nanoparticles in mice effectively upregulated the target gene, Sirt1, in the brain, decreased cerebral edema and increased survival after permanent middle cerebral artery occlusion. Additionally, we observed no significant in vivo toxicity associated with intranasal administration of the nanoparticles, highlighting the safety of this approach. Conclusion: This study demonstrates that the proposed protein-based CRISPR-dCas9 system targeting neuroprotective genes in general, and SIRT1 in particular, can be a potential novel therapy for acute ischemic stroke.


Asunto(s)
Administración Intranasal , Encéfalo , Modelos Animales de Enfermedad , Terapia Genética , Accidente Cerebrovascular Isquémico , Nanopartículas , Sirtuina 1 , Animales , Ratones , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/genética , Nanopartículas/administración & dosificación , Terapia Genética/métodos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Encéfalo/metabolismo , Masculino , Fosfatos de Calcio , Sistemas CRISPR-Cas , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/genética , Células Epiteliales/metabolismo
5.
Int J Med Sci ; 21(11): 2189-2200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239553

RESUMEN

In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.


Asunto(s)
Adenosina Trifosfato , Infarto de la Arteria Cerebral Media , Cinesinas , Mitocondrias , Células Precursoras de Oligodendrocitos , Transducción de Señal , Animales , Transducción de Señal/genética , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Cinesinas/genética , Cinesinas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ratas , Proteínas Proto-Oncogénicas
6.
Clin Exp Pharmacol Physiol ; 51(11): e13917, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39285148

RESUMEN

Ischaemic stroke is a common condition that can lead to cerebral ischaemia-reperfusion injury. Phillygenin (PHI), a natural bioactive compound derived from Forsythia suspensa, has been shown to play a crucial role in regulating inflammation across various diseases. However, its specific regulatory effects in ischaemic stroke progression remain unclear. In this study, we established a middle cerebral artery occlusion (MCAO) rat model. Treatment with PHI (50 or 100 mg/kg) significantly reduced cerebral infarction in MCAO rats. PHI treatment also mitigated the increased inflammatory response observed in these rats. Additionally, PHI suppressed microglial activation by reducing iNOS expression, a marker of M1-type polarization of microglia, and attenuated increased brain tissue apoptosis in MCAO rats. Furthermore, PHI's anti-inflammatory effects in MCAO rats were abrogated upon co-administration with GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) inhibitor. In summary, PHI attenuated microglial activation and apoptosis in cerebral ischaemia-reperfusion injury through PPARγ activation, suggesting its potential as a therapeutic agent for mitigating cerebral ischaemia-reperfusion injury.


Asunto(s)
Apoptosis , Infarto de la Arteria Cerebral Media , Microglía , PPAR gamma , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , PPAR gamma/metabolismo , Apoptosis/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Ratas , Masculino , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Lignanos
7.
CNS Neurosci Ther ; 30(9): e70033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267282

RESUMEN

AIMS: Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD: A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS: tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION: tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media , Isoflurano , Ratas Sprague-Dawley , Daño por Reperfusión , Estimulación Transcraneal de Corriente Directa , Animales , Isoflurano/farmacología , Masculino , Daño por Reperfusión/prevención & control , Ratas , Estimulación Transcraneal de Corriente Directa/métodos , Precondicionamiento Isquémico/métodos , Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/farmacología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Anestésicos por Inhalación/farmacología
8.
Sci Rep ; 14(1): 21410, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271781

RESUMEN

Acute ischemic stroke (AIS) is a major global health concern due to its high mortality and disability rates. Hemorrhagic transformation, a common complication of AIS, leads to poor prognosis yet lacks effective treatments. Preclinical studies indicate that hyperbaric oxygen (HBO) treatment within 12 h of AIS onset alleviates ischemia/reperfusion injuries, including hemorrhagic transformation. However, clinical trials have yielded conflicting results, suggesting some underlying mechanisms remain unclear. In this study, we confirmed that HBO treatments beginning within 1 h post reperfusion significantly alleviated the haemorrhage and neurological deficits in hyperglycemic transient middle cerebral arterial occlusion (tMCAO) mice, partly due to the inhibition of the NLRP3 inflammasome-mediated pro-inflammatory response in microglia. Notably, reactive oxygen species (ROS) mediate the anti-inflammatory and protective effect of early HBO treatment, as edaravone and N-Acetyl-L-Cysteine (NAC), two commonly used antioxidants, reversed the suppressive effect of HBO treatment on NLRP3 inflammasome-mediated inflammation in microglia. Furthermore, NAC countered the protective effect of early HBO treatment in tMCAO mice with hyperglycemia. These findings support that early HBO treatment is a promising intervention for AIS, however, caution is warranted when combining antioxidants with HBO treatment. Further assessments are needed to clarify the role of antioxidants in HBO therapy for AIS.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperglucemia , Microglía , Especies Reactivas de Oxígeno , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Oxigenoterapia Hiperbárica/métodos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/complicaciones , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Modelos Animales de Enfermedad , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Antioxidantes/farmacología , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/terapia , Edaravona/farmacología , Daño por Reperfusión/metabolismo
9.
CNS Neurosci Ther ; 30(9): e70030, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233353

RESUMEN

BACKGROUND: Ischemic stroke leads a primary cause of mortality in human diseases, with a high disability rate worldwide. This study aims to investigate the function of ß-1,4-galactosyltransferase 1 (B4galt1) in mouse brain ischemia/reperfusion (I/R) injury. METHODS: Recombinant human B4galt1 (rh-B4galt1) was intranasally administered to the mice model of middle cerebral artery occlusion (MCAO)/reperfusion. In this study, the impact of rh-B4galt1 on cerebral injury assessed using multiple methods, including the neurological disability status scale, 2,3,5-triphenyltetrazolium chloride (TTC), Nissl and TUNEL staining. This study utilized laser speckle Doppler flowmeter to monitor the cerebral blood flow. Western blotting was performed to assess the protein expression levels, and fluorescence-labeled dihydroethidium method was performed to determine the superoxide anion generation. Assay kits were used for the measurement of iron, malondialdehyde (MDA) and glutathione (GSH) levels. RESULTS: We demonstrated that rh-B4galt1 markedly improved neurological function, reduced cerebral infarct volume and preserved the completeness of blood-brain barrier (BBB) for preventing damage. These findings further illustrated that rh-B4galt1 alleviated oxidative stress, lipid peroxidation, as well as iron deposition induced by I/R. The vital role of ferroptosis was proved in brain injury. Furthermore, the rh-B4galt1 could increase the levels of TAZ, Nrf2 and HO-1 after I/R. And TAZ-siRNA and ML385 reversed the neuroprotective effects of rh-B4galt1. CONCLUSIONS: The results indicated that rh-B4galt1 implements neuroprotective effects by modulating ferroptosis, primarily via upregulating TAZ/Nrf2/HO-1 pathway. Thus, B4galt1 could be seen as a promising novel objective for ischemic stroke therapy.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Galactosiltransferasas , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevención & control , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Galactosiltransferasas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Infarto de la Arteria Cerebral Media , Proteínas de la Membrana , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
10.
J Nanobiotechnology ; 22(1): 534, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227960

RESUMEN

Ischemic stroke is a common cause of mortality and severe disability in human and currently lacks effective treatment. Neuronal activation and neuroinflammation are the major two causes of neuronal damage. However, little is known about the connection of these two phenomena. This study uses middle cerebral artery occlusion mouse model and chemogenetic techniques to study the underlying mechanisms of neuronal excitotoxicity and severe neuroinflammation after ischemic stroke. Chemogenetic inhibition of neuronal activity in ipsilesional M1 alleviates infarct area and neuroinflammation, and improves motor recovery in ischemia mice. This study identifies that ischemic challenge triggers neuron to produce unique small extracellular vesicles (EVs) to aberrantly activate adjacent neurons which enlarge the neuron damage range. Importantly, these EVs also drive microglia activation to exacerbate neuroinflammation. Mechanistically, EVs from ischemia-evoked neuronal activity induce neuronal apoptosis and innate immune responses by transferring higher miR-100-5p to adjacent neuron and microglia. MiR-100-5p can bind to and activate TLR7 through U18U19G20-motif, thereby activating NF-κB pathway. Furthermore, knock-down of miR-100-5p expression improves poststroke outcomes in mice. Taken together, this study suggests that the combination of inhibiting aberrant neuronal activity and the secretion of specific EVs-miRNAs may serve as novel methods for stroke treatment.


Asunto(s)
Vesículas Extracelulares , Ratones Endogámicos C57BL , MicroARNs , Microglía , Neuronas , Accidente Cerebrovascular , Animales , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Ratones , Masculino , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Infarto de la Arteria Cerebral Media , Apoptosis , Inmunidad Innata , Humanos , Glicoproteínas de Membrana
11.
Cell Death Dis ; 15(9): 650, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231943

RESUMEN

Acid sphingomyelinase (ASM) inhibitors are widely used for the treatment of post-stroke depression. They promote neurological recovery in animal stroke models via neurorestorative effects. In a previous study, we found that antidepressants including amitriptyline, fluoxetine, and desipramine increase cerebral angiogenesis post-ischemia/reperfusion (I/R) in an ASM-dependent way. To elucidate the underlying mechanisms, we investigated the effects of the functional ASM inhibitor amitriptyline in two models of I/R injury, that is, in human cerebral microvascular endothelial hCMEC/D3 cells exposed to oxygen-glucose deprivation and in mice exposed to middle cerebral artery occlusion (MCAO). In addition to our earlier studies, we now show that amitriptyline increased mitochondrial reactive oxygen species (ROS) formation in hCMEC/D3 cells and increased ROS formation in the vascular compartment of MCAO mice. ROS formation was instrumental for amitriptyline's angiogenic effects. ROS formation did not result in excessive endothelial injury. Instead, amitriptyline induced a profound metabolic reprogramming of endothelial cells that comprised reduced endothelial proliferation, reduced mitochondrial energy metabolism, reduced endoplasmic reticulum stress, increased autophagy/mitophagy, stimulation of antioxidant responses and inhibition of apoptotic cell death. Specifically, the antioxidant heme oxygenase-1, which was upregulated by amitriptyline, mediated amitriptyline's angiogenic effects. Thus, heme oxygenase-1 knockdown severely compromised angiogenesis and abolished amitriptyline's angiogenic responses. Our data demonstrate that ASM inhibition reregulates a complex network of metabolic and mitochondrial responses post-I/R that contribute to cerebral angiogenesis without compromising endothelial survival.


Asunto(s)
Amitriptilina , Células Endoteliales , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Daño por Reperfusión , Esfingomielina Fosfodiesterasa , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Humanos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Especies Reactivas de Oxígeno/metabolismo , Amitriptilina/farmacología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Supervivencia Celular/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Línea Celular , Angiogénesis
12.
J Neurosci Res ; 102(9): e25379, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235282

RESUMEN

We reported that infiltrated Ly6C+ macrophages express brain-derived neurotrophic factor (BDNF) only at the cerebral cortex infarct in a rat dMCAO model. However, the changein neuron-expressed BDNF, the niche components that induce the Ly6C+ cells to express BDNF, and the cellular sources of these components, remain unclear. In this study, immunofluorescence double staining was performed to label BDNF and Ly6C on brain sections at 3, 24, and 48 h following distal middle cerebral artery occlusion (dMCAO) of male rats, and to stain BDNF with Ly6C, IL-4R, and IL-10R. A neutralizing anti-IL-4 antibody was injected into the infarct, and the IL-4 and BDNF concentrations in the subareas of the infarct were determined using enzyme-linked immunosorbent assay. To find out the cellular sources of IL-4, the markers for microglia, T cells, and neurons were co-stained with IL-4 separately. In certain infarct subareas, the main BDNF-expressing cells shifted quickly from NeuN+ neurons to Ly6C+ cells during 24-48 h post-stroke, and the Ly6C+/BDNF+ cells mostly expressed IL-4 receptor. Following IL-4 neutralizing antibody injection, the BDNF, IL-4 protein levels, and BDNF+/Ly6C+ cells decreased significantly. The main IL-4-expressing cell type in this infarct subarea is not neuron either, but immune cells, including microglia, monocyte, macrophages, and T cells. The neurons, maintained BDNF and IL-4 expression in the peri-infarct area. In conclusion, in a specific cerebral subarea of the rat dMCAO model, IL-4 secreted by immune cells is one of the main inducers for Ly6C+ cells to express BDNF.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Interleucina-4 , Macrófagos , Animales , Masculino , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Interleucina-4/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley
13.
Cell Mol Biol Lett ; 29(1): 114, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198723

RESUMEN

BACKGROUND: Stroke is a type of acute brain damage that can lead to a series of serious public health challenges. Demonstrating the molecular mechanism of stroke-related neural cell degeneration could help identify a more efficient treatment for stroke patients. Further elucidation of factors that regulate microglia and nuclear factor (erythroid-derived 2)-like 1 (Nrf1) may lead to a promising strategy for treating neuroinflammation after ischaemic stroke. In this study, we investigated the possible role of pterostilbene (PTS) in Nrf1 regulation in cell and animal models of ischaemia stroke. METHODS: We administered PTS, ITSA1 (an HDAC activator) and RGFP966 (a selective HDAC3 inhibitor) in a mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and a model of microglial oxygen‒glucose deprivation/reperfusion (OGD/R). The brain infarct size, neuroinflammation and microglial availability were also determined. Dual-luciferase reporter, Nrf1 protein stability and co-immunoprecipitation assays were conducted to analyse histone deacetylase 3 (HDAC3)/Nrf1-regulated Nrf1 in an OGD/R-induced microglial injury model. RESULTS: We found that PTS decreased HDAC3 expression and activity, increased Nrf1 acetylation in the cell nucleus and inhibited the interaction of Nrf1 with p65 and p65 accumulation, which reduced infarct volume and neuroinflammation (iNOS/Arg1, TNF-α and IL-1ß levels) after ischaemic stroke. Furthermore, the CSF1R inhibitor PLX5622 induced elimination of microglia and attenuated the therapeutic effect of PTS following MCAO/R. In the OGD/R model, PTS relieved OGD/R-induced microglial injury and TNF-α and IL-1ß release, which were dependent on Nrf1 acetylation through the upregulation of HDAC3/Nrf1 signalling in microglia. However, the K105R or/and K139R mutants of Nrf1 counteracted the impact of PTS in the OGD/R-induced microglial injury model, which indicates that PTS treatment might be a promising strategy for ischaemia stroke therapy. CONCLUSION: The HDAC3/Nrf1 pathway regulates the stability and function of Nrf1 in microglial activation and neuroinflammation, which may depend on the acetylation of the lysine 105 and 139 residues in Nrf1. This mechanism was first identified as a potential regulatory mechanism of PTS-based neuroprotection in our research, which may provide new insight into further translational applications of natural products such as PTS.


Asunto(s)
Histona Desacetilasas , Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Estilbenos , Animales , Histona Desacetilasas/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Transducción de Señal/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
14.
Brain Res Bull ; 216: 111050, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147243

RESUMEN

BACKGROUND: G protein-coupled receptor 68 (GPR68), an orphan receptor, has emerged as a promising therapeutic target for mitigating neuronal inflammation and oxidative damage. This study explores the protective mechanisms of GPR68 in cerebral ischemia-reperfusion injury (CIRI). METHODS: An in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was established. Mice received intraperitoneal injections of Ogerin, a selective GPR68 agonist. In vitro, GPR68 was overexpressed in SH-SY5Y and HMC3 cells, and the effects of oxygen-glucose deprivation/reperfusion (OGD/R) on cell viability were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. RESULTS: The expression of GPR68 was suppressed in cells subjected to OGD/R treatment, whereas its upregulation conferred protection to SH-SY5Y and HMC3 cells. In vivo, levels of GPR68 were reduced in brain tissues affected by MCAO/R, correlating with oxidative stress, inflammation, and neurological damage. Treatment with a GPR68 agonist decreased brain infarction, apoptosis, and dysregulated gene expression induced by MCAO/R. Mechanistically, GPR68 agonist treatment may inhibit the activation of the NF-κB/Hif-1α pathway, thereby reducing oxidative and inflammatory responses and enhancing protection against CIRI. CONCLUSIONS: This study confirms that the GPR68/NF-κB/Hif-1α axis modulates apoptosis, inflammation, and oxidative stress in CIRI, indicating that GPR68 is a potential therapeutic target for CIRI.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , FN-kappa B , Fármacos Neuroprotectores , Receptores Acoplados a Proteínas G , Daño por Reperfusión , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Masculino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular Tumoral
15.
Acta Neurochir (Wien) ; 166(1): 356, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215801

RESUMEN

BACKGROUND: Cerebral Revascularization (CR) remained an indispensable arm in the neurosurgical arsenal, especially managing symptomatic hemisphere with misery perfusion (SHMP). METHOD: We described an a mid-aged gentleman diagnosed with progressive middle cerebral steno-occlusion following carotid endarterectomy by employing individualized arterial reconstruction with tentative clamping method (TCM) under supervision of intraoperative monitoring. An operative video was also accompanied to demonstrate further details. CONCLUSION: The optimal treatment strategy for SHMP should be tailored by individuals. The risk of postoperative adverse sequel can be minimized and improved neuro-cognitive status was accomplished with an aid of TCM for such prophylactic procedure. CLINICAL TRIAL REGISTRATION: NA.


Asunto(s)
Revascularización Cerebral , Endarterectomía Carotidea , Humanos , Masculino , Persona de Mediana Edad , Estenosis Carotídea/cirugía , Revascularización Cerebral/métodos , Constricción , Endarterectomía Carotidea/métodos , Infarto de la Arteria Cerebral Media/cirugía , Infarto de la Arteria Cerebral Media/diagnóstico por imagen
16.
J Neuroinflammation ; 21(1): 214, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217343

RESUMEN

BACKGROUND: Leukocyte immunoglobulin-like receptor B4 (LILRB4) plays a significant role in regulating immune responses. LILRB4 in microglia might influence the infiltration of peripheral T cells. However, whether and how LILRB4 expression aggravates brain damage after acute ischemic stroke remains unclear. This study investigates the role of LILRB4 in modulating the immune response and its potential protective effects against ischemic brain injury in mice. METHODS AND RESULTS: Microglia-specific LILRB4 conditional knockout (LILRB4-KO) and overexpression transgenic (LILRB4-TG) mice were constructed by a Cre-loxP system. Then, they were used to investigate the role of LILRB4 after ischemic stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Spatial transcriptomics analysis revealed increased LILRB4 expression in the ischemic hemisphere. Single-cell RNA sequencing (scRNA-seq) identified microglia-cluster3, an ischemia-associated microglia subcluster with elevated LILRB4 expression in the ischemic brain. Flow cytometry and immunofluorescence staining showed increased CD8+ T cell infiltration into the brain in LILRB4-KO-tMCAO mice. Behavioral tests, cortical perfusion maps, and infarct size measurements indicated that LILRB4-KO-tMCAO mice had more severe functional deficits and larger infarct sizes compared to Control-tMCAO and LILRB4-TG-tMCAO mice. T cell migration assays demonstrated that LILRB4-KD microglia promoted CD8+ T cell recruitment and activation in vitro, which was mitigated by CCL2 inhibition and recombinant arginase-1 addition. The scRNA-seq and spatial transcriptomics identified CCL2 was predominantly secreted from activated microglia/macrophage and increased CCL2 expression in LILRB4-KD microglia, suggesting a chemokine-mediated mechanism of LILRB4. CONCLUSION: LILRB4 in microglia plays a crucial role in modulating the post-stroke immune response by regulating CD8+ T cell infiltration and activation. Knockout of LILRB4 exacerbates ischemic brain injury by promoting CD8+ T cell recruitment. Overexpression of LILRB4, conversely, offers neuroprotection. These findings highlight the therapeutic potential of targeting LILRB4 and its downstream pathways to mitigate immune-mediated damage in ischemic stroke.


Asunto(s)
Linfocitos T CD8-positivos , Accidente Cerebrovascular Isquémico , Microglía , Receptores Inmunológicos , Regulación hacia Arriba , Animales , Ratones , Microglía/metabolismo , Microglía/patología , Linfocitos T CD8-positivos/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/genética , Ratones Noqueados , Ratones Transgénicos , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/metabolismo , Masculino
17.
J Ethnopharmacol ; 335: 118636, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089658

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is an acute central nervous system disease that poses a threat to human health. It induces a series of severe pathological mechanisms, ultimately leading to neuronal cell death in the brain due to local ischemia and hypoxia. Buyang Huanwu decoction (BYHWD), as a representative formula for treating ischemic stroke, has shown good therapeutic effects in stroke patients. AIM OF THE STUDY: This study aimed to explore the mechanism of BYHWD in promoting neural remodeling after ischemic stroke from the perspective of neuronal synaptic plasticity, based on the cAMP/PKA/CREB signaling pathway. MATERIALS AND METHODS: A modified suture technique was employed to establish a rat model of MCAO. The rats were divided into sham, model, and BYHWD (20 g/kg) groups. After the corresponding intervention, rat brains from each group were collected. TMT quantitative proteomics technology was employed for the research. Following proteomics studies, we investigated the mechanism of BYHWD in the intervention of ischemic stroke through animal experiments and cell experiments. The experimental animals were divided into sham, model, and BYHWD (5 g/kg, 10 g/kg, and 20 g/kg) groups. Infarct volume and severity of brain injury were measured by TTC staining. HE staining was utilized to evaluate alterations in tissue morphology. The Golgi staining was used to observe changes in cell body, dendrites, and dendritic spines. Transmission electron microscopy was used to observe the ultrastructure of synapses in the cortex and hippocampus. TUNEL staining was conducted to identify apoptotic neurons. Meanwhile, a stable and reliable (OGD/R) SH-SY5Y cell model was established. The effect of BYHWD-containing serum on SH-SY5Y cell viability was measured by CCK-8 kit. The apoptosis situation of SH-SY5Y cells was determined by Annexin V-FITC/PI. Immunofluorescence was employed to measure the fluorescence intensity of synaptic-related factors Syt1, Psd95, and Syn1. Synaptic plasticity pathways were assessed by using RT-qPCR and Western blot to determine the expression levels of cAMP, Psd95, Prkacb, Creb1/p-Creb1, BDNF, Shank2, Syn1, Syt1, Bcl-2, Bcl-2/Bax mRNA and proteins. RESULTS: After treatment with BYHWD, notable alterations were detected in the signaling pathways linked to synaptic plasticity and the cAMP signaling pathway-related targets among the intervention targets. This trend of change was also reflected in other bioinformatics analyses, indicating the important role of synaptic plasticity changes before and after modeling and drug intervention. The results of vivo and vitro experiments showed that BYHWD improved local pathological changes, and reduced cerebral infarct volume, and neurological function scores in MCAO rats. It increased dendritic spine density, improved synaptic structural plasticity, and had a certain neuroprotective effect. BYHWD increased the postsynaptic membrane thickness, synaptic interface curvature, and synaptic quantity. 10% BYHWD-containing serum was determined as the optimal concentration for treatment. 10% BYHWD-containing serum significantly reduced the overall apoptotic rate of (OGD/R) SH-SY5Y cells. Immunofluorescence experiments demonstrated that 10% BYHWD-containing serum could improve synaptic plasticity and increase the relative expression levels of synaptic-related proteins Syt1, Psd95, and Syn1. BYHWD and decoction-containing serum upregulated the mRNA and protein expression levels in (OGD/R) SH-SY5Y cells and MCAO rats, suggesting its ability to improve damaged neuronal synaptic plasticity and enhance transmission efficiency, which might be achieved through the regulation of the cAMP/PKA/CREB pathway. CONCLUSIONS: This study may provide a basis for clinical medication by elucidating the underlying experimental evidence for the promotion of neural plasticity after ischemic stroke by BYHWD.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , AMP Cíclico , Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Plasticidad Neuronal , Ratas Sprague-Dawley , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , AMP Cíclico/metabolismo , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
18.
Bull Exp Biol Med ; 177(3): 344-348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39126546

RESUMEN

The neuroprotective activity of tryptanthrin and its oxime was compared in male Wistar rats with a model of intraluminal occlusion of the middle cerebral artery. Neurobehavioral tests were performed 4, 24, and 48 h after focal cerebral infarction (FCI) using a modified neurological severity score (mNSS); additionally, the horizontal stability test, the plantar sensitivity test of the fore and hind limbs, holding on the tilted cage top test, and negative geotaxis test were performed. The size of FCI and the severity of brain tissue swelling were examined on day 2 after occlusion. Tryptanthrin and its oxime were administered at a dose of 10 mg/kg intraperitoneally during FCI, then daily for 2 days. In the control group, the mean score of neurological deficit remained at a high level for 2 days. FCI size was 43.8±3.4% of hemisphere area, and the hemisphere volume increased by 18.5±2.0% due to brain tissue swelling and edema. Administration of tryptanthrin and its oxime significantly decreased neurological deficits at all control points and reduced FCI size (by 24.2 and 30.4%, respectively) and brain tissue swelling of the affected hemisphere (by 64.9 and 62.7%, respectively). Therefore, the neuroprotective effect of tryptanthrine and its oxime in the acute period of FCI is largely determined by their anti-inflammatory activity.


Asunto(s)
Infarto de la Arteria Cerebral Media , Fármacos Neuroprotectores , Oximas , Quinazolinas , Ratas Wistar , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Oximas/farmacología , Oximas/uso terapéutico , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/patología
19.
Genome Med ; 16(1): 95, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095897

RESUMEN

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular Isquémico , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Femenino , Masculino , Ratones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Infarto de la Arteria Cerebral Media/patología , Ratones Endogámicos C57BL
20.
Neuroreport ; 35(14): 895-903, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39166386

RESUMEN

Ischemic stroke remains a major cause of disability and mortality. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in cerebral ischemic injury. Additionally, lactylation regulates the progression of ischemia injury. This study aimed to investigate the impact of NCOA4 on ferritinophagy and glycolysis of hippocampal neuron cells and its lactylation modification. Middle cerebral artery occlusion (MCAO) mouse and oxygen-glucose deprivation (OGD)-treated HT22 cell models were generated. Ferritinophagy was evaluated via detecting ferrous iron (Fe 2+ ), glutathione, malondialdehyde, and protein levels. Glycolysis was assessed by examining the glucose consumption, lactate production, and extracellular acidification rate. The lactylation was evaluated using immunoprecipitation and immunoblotting. Brain injury in vivo was analyzed by measuring brain infarct and neurological function. The results showed that NCOA4 expression was increased in the blood of patients with acute ischemia stroke, the peri-infarct region of the brain in MCAO mice (increased percentage: 142.11%) and OGD-treated cells (increased percentage: 114.70%). Knockdown of NCOA4 inhibited ferritinophagy and glycolysis of HT22 cells induced by OGD. Moreover, OGD promoted the lactylation of NCOA4 at lysine (K)450 sites, which enhanced NCOA4 protein stability. Additionally, interfering with NCOA4 attenuated brain infarction and neurological dysfunction in MCAO mice. Lactylation of NCOA4 at K450 sites promotes ferritinophagy and glycolysis of hippocampal neuron cells, thereby accelerating cerebral ischemic injury. These findings suggest a novel pathogenesis of ischemic stroke.


Asunto(s)
Ferritinas , Glucólisis , Infarto de la Arteria Cerebral Media , Neuronas , Coactivadores de Receptor Nuclear , Animales , Neuronas/metabolismo , Glucólisis/fisiología , Ratones , Coactivadores de Receptor Nuclear/metabolismo , Ferritinas/metabolismo , Masculino , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Humanos , Ratones Endogámicos C57BL , Autofagia/fisiología , Hipocampo/metabolismo , Glucosa/deficiencia , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA