Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.370
Filtrar
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
2.
Food Chem ; 462: 140996, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213962

RESUMEN

The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.


Asunto(s)
Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Hidrolisados de Proteína , Proteínas de Soja , Tripsina , Tripsina/química , Hidrólisis , Emulsiones/química , Proteínas de Soja/química , Hidrolisados de Proteína/química , Agregado de Proteínas
3.
Food Chem ; 462: 140953, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216374

RESUMEN

The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Digestión , Glútenes , Péptidos , Peptidil-Dipeptidasa A , Ratas Endogámicas SHR , Zea mays , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antihipertensivos/química , Antihipertensivos/farmacología , Animales , Glútenes/química , Glútenes/metabolismo , Humanos , Zea mays/química , Zea mays/metabolismo , Ratas , Células CACO-2 , Péptidos/química , Péptidos/farmacología , Masculino , Digestión/efectos de los fármacos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Presión Sanguínea/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Tracto Gastrointestinal/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Hidrólisis
4.
Food Chem ; 462: 141017, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216379

RESUMEN

The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.


Asunto(s)
Proteínas de Peces , Hidrolisados de Proteína , Salmo salar , Animales , Salmo salar/metabolismo , Hidrolisados de Proteína/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Humanos , Hidrólisis , Residuos/análisis
5.
Food Chem ; 462: 141023, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217742

RESUMEN

Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, ß chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.


Asunto(s)
Cartílago , Pollos , Sulfatos de Condroitina , Colágeno Tipo II , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/aislamiento & purificación , Cartílago/química , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Peso Molecular , Esternón/química , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier
6.
Food Chem ; 462: 140989, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226641

RESUMEN

This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.


Asunto(s)
Fibras de la Dieta , Zea mays , Zea mays/química , Fibras de la Dieta/análisis , Hidrólisis , Viscosidad , Análisis Multivariante , Calor , Tamaño de la Partícula , Antioxidantes/química , Culinaria , Solubilidad
7.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003054

RESUMEN

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Asunto(s)
Muramidasa , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Muramidasa/metabolismo , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Metano , Hidrólisis
8.
Carbohydr Polym ; 346: 122661, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245515

RESUMEN

Raffinose family oligosaccharides (RFOs) have diverse structures and exhibit various biological activities. When using RFOs as prebiotics, their structures need to be identified. If we first knew whether an RFO was classical or non-classical, structural identification would become much easier. Here, we cloned and expressed an α-galactosidase (BF0224) from Bacteroides fragilis which showed strict specificity for hydrolyzing α-Gal-(1 â†’ 6)-Gal linkages in RFOs. BF0224 efficiently distinguished classical from non-classical RFOs by identifying the resulting hydrolyzed oligo- and mono-saccharides with HPAEC-PAD-MS. Using this strategy, we identified a non-classical RFO from Pseudostellaria heterophylla (Miquel) Pax with DP6 (termed PHO-6), as well as a classical RFO from Lycopus lucidus Turcz. with DP7 (termed LTO-7). To characterize these RFO structures, we employed four other commercial or reported α-galactosidases in combination with NMR and methylation analysis. Using this approach, we elucidated the accurate chemical structure of PHO-6 and LTO-7. Our study provides an efficient analytical approach to structurally analyze RFOs. This enzyme-based strategy also can be applied to structural analysis of other glycans.


Asunto(s)
Bacteroides fragilis , Oligosacáridos , Rafinosa , alfa-Galactosidasa , Bacteroides fragilis/enzimología , alfa-Galactosidasa/química , alfa-Galactosidasa/metabolismo , alfa-Galactosidasa/genética , Rafinosa/química , Rafinosa/metabolismo , Oligosacáridos/química , Hidrólisis
9.
Carbohydr Polym ; 346: 122628, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245529

RESUMEN

The traditional lignocellulose pretreatment by deep eutectic solvent (DES) was usually conducted under higher acidic, alkaline and high temperature conditions, which leads to the severe degradation of xylan, decreasing the subsequent reducing sugar concentration by enzymatic hydrolysis and further ethanol fermentation. It is essential to develop an effective DES that selectively removes lignin while preventing excessive xylan degradation during lignocellulose pretreatment. An effective ethylene glycol-assisted ternary DES was designed to treat corn straw (CS) at 100 °C for 6 h. 65.51 % lignin removal was achieved, over 93.46 % cellulose and 50.22 % xylan were retained in pretreated CS with excellent enzymatic digestibility (glucan conversion of 77.05 % and xylan conversion of 71.72 %), total sugar conversion could reach 75.93 %, implying the unique capacity to selectively remove lignin while preserving carbohydrate components. Furthermore, the universality of the selective removal of lignin and effective retention of xylan by ternary DES has been successfully proven by other polyols. The enzymatic hydrolysate of ternary DES-pretreated CS fermented over our genetically engineered yeast strain SFA1OE gave a high ethanol yield of 0.488 g/g total reducing sugar, demonstrating the effectiveness of the polyol-assisted ternary DES pretreatment in achieving high-efficiency cellulosic ethanol production.


Asunto(s)
Disolventes Eutécticos Profundos , Etanol , Fermentación , Lignina , Xilanos , Zea mays , Lignina/química , Etanol/química , Etanol/metabolismo , Xilanos/química , Hidrólisis , Zea mays/química , Disolventes Eutécticos Profundos/química , Polímeros/química , Saccharomyces cerevisiae/metabolismo , Celulosa/química , Solventes/química
10.
Bioengineered ; 15(1): 2396647, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39235136

RESUMEN

Oleuropein (OP) is an appreciated compound present not only in fruits but also in leaves of olive trees, which can be transformed into hydroxytyrosol (HT), a substance with high antioxidant activity. In this work, the transformation of an agricultural residue containing OP (olive leaves or wastewater from mills) to the high added value compound HT is accomplished through different enzymatic strategies. Different enzymes were used, immobilized on various supports by diverse binding forces: beta-glucosidase encapsulated in siliceous material, esterases and lipases immobilized on hydrophobic supports (octyl-functionalized amorphous silica and periodic mesoporous organosilica), and esterase immobilized on amine-functionalized ordered mesoporous silica. All these biocatalysts were tested for oleuropein hydrolysis through two different reaction approaches: a) split of glucosidic bond catalyzed by beta-glucosidase (ß-glu), followed by hydrolysis of the aglycon and further ester hydrolysis. 5 mg·mL-1 of ß-glu fully hydrolyzed 5 mM OP at pH 7 and 50°C in 7 days, and further enzymatic hydrolysis of the aglycon yielded near to 0.5 mM HT in the best conditions tested. b) via direct hydrolysis of the ester bond to produce hydroxytyrosol in a one-step reaction using esterases or lipases. The latter reaction pathway catalyzed by lipase from Penicillium camemberti immobilized on octyl-silica (4 mg·mL-1) at 35°C and pH 6 directly produced 6.8 mM HT (1 mg·mL-1), transforming in 12 days near to 30% of the initial 25 mM OP from a commercial olive leaves extract.


Asunto(s)
Enzimas Inmovilizadas , Glucósidos Iridoides , Olea , Alcohol Feniletílico , beta-Glucosidasa , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/análogos & derivados , Glucósidos Iridoides/química , Olea/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lipasa/metabolismo , Lipasa/química , Hidrólisis , Agricultura , Hojas de la Planta/química , Iridoides/química , Iridoides/metabolismo
11.
Carbohydr Res ; 544: 109248, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222593

RESUMEN

This study aimed at optimizing process protocols for development of low glycemic index (GI) rice flour (LGIRF) by employing enzymatic hydrolysis method using central composite rotatable design (CCRD). LGIRF was evaluated for pasting, farinographic, spectroscopic and microbiological attributes. Independent variables for optimization included concentrations of α-amylase (0.02-0.12 %), glucoamylase (0.02-0.24 %), as well as the incubation temperature (55-80°C). Resistant starch (RS), glycemic index (GI) and glycemic load (GL) were investigated as response variables. The optimum conditions for development of LGIRF with better quality were- α-amylase concentration of 0.040 %, glucoamylase concentration of 0.070 % and an incubation temperature of 60 °C. The results of mineral analysis revealed significantly (p < 0.05) lower levels of boron, potassium, zinc, phosphorus, magnesium, and manganese in LGIRF, while iron and copper were significantly higher. The viscosity profile as evident from pasting profile and farinographic characteristics of LGIRF were significantly (p < 0.05) lower than native rice flour. 1H NMR and 13C NMR spectroscopic studies showed an increase in flexible starch segments and a decrease in amorphous portion of starch LGIRF, along with chemical shift alterations in carbons 1 and 4. Free fatty acids and total plate count were significantly (p < 0.05) higher in LGIRF although was within limits.


Asunto(s)
Harina , Glucano 1,4-alfa-Glucosidasa , Índice Glucémico , Oryza , Reología , alfa-Amilasas , Oryza/química , Hidrólisis , Harina/análisis , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucano 1,4-alfa-Glucosidasa/química , Almidón/química , Almidón/metabolismo
12.
Sci Rep ; 14(1): 21450, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271743

RESUMEN

The pretreatment and saccharification of dewaxed bagasse (DWB) has been investigated under various reaction conditions ranging 2000 to 3200 psi, at 70 ± 1 °C in supercritical carbon dioxide (SCC). This has been in attempt to transform the DWB into fermentable sugar and bioethanol in high yields. The effect of SCC mediated pretreatment and enzymatic hydrolysis on structural and morphological alterations in DWB has been ascertained through diverse analytical methods. The sugar has been released through cellulase (40 FPU/mL) mediated enzymatic hydrolysis of pretreated DWB in sodium acetate buffer (pH 4.7) within 1 h at SCC 2800 psi, 70 ± 1 °C. The released sugar was subsequently fermented in the presence of yeast (Saccharomyces crevices, 135 CFU) at 28 ± 1 °C over 72 h to afford the bioethanol. The SCC mediated process conducted in acetic acid:water media (1:1) at 2800 psi, 70 ± 1 °C over 6 h has afforded the pretreated DWB with maximum yield towards the production of fermentable sugar and bioethanol. The production of fermentable sugar and bioethanol has been electrochemically estimated through cyclic voltammetry (CV) and square wave voltammetry (SWV) over glassy carbon electrode in KOH (0.1 M). The electrochemical methods were found selective and in close agreement for estimation of the yields (%) of fermentable sugars and bioethanol. The yield (%) of fermentable sugar estimated from CV and SWV were 80.10 ± 5.34 and 79.00 ± 5.09 respectively. Whereas the yield (%) of bioethanol estimated from CV and SWV were 81.30 ± 2.78% and 78.6 ± 1.25% respectively. Present investigation delivers a SCC mediated green and sustainable method of pretreatment of DWB to afford the enhanced saccharification, to produce bioethanol in high yields.


Asunto(s)
Biocombustibles , Dióxido de Carbono , Celulosa , Etanol , Fermentación , Etanol/metabolismo , Etanol/química , Celulosa/metabolismo , Celulosa/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Hidrólisis , Saccharomyces cerevisiae/metabolismo , Celulasa/metabolismo
13.
FASEB J ; 38(18): e70025, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39279493

RESUMEN

Extracellular hydrolysis of the phosphate esters of B vitamins (B1, B2, and B6) is crucial for their cellular uptake and metabolism. Although a few zinc-dependent enzymes have been implicated in these processes, their exact mechanisms of action remain largely unknown. This study investigated the potential involvement of phosphate group hydrolyzing enzymes in the hydrolysis of B vitamin phosphate esters. We evaluated enzyme activity in membrane lysates prepared from cells transiently transfected with these enzymes or those endogenously expressing them. Specifically, we investigated how zinc deficiency affects the rate of hydrolysis of B vitamin phosphate esters in cellular lysates. Assessment of the activities of zinc-dependent ectoenzymes in the lysates prepared from cells cultured in zinc-deficient conditions and in the serum of rats fed zinc-deficient diets revealed that zinc deficiency reduced the extracellular hydrolysis activity of B vitamin phosphate esters. Furthermore, our findings explain the similarities between several symptoms of B vitamin and zinc deficiencies. Collectively, this study provides novel insights into the diverse symptoms of zinc deficiency and could guide the development of appropriate clinical strategies.


Asunto(s)
Ésteres , Zinc , Animales , Zinc/metabolismo , Zinc/deficiencia , Ratas , Hidrólisis , Ésteres/metabolismo , Humanos , Masculino , Complejo Vitamínico B/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Vitamina B 6/metabolismo , Ratas Wistar
14.
ACS Macro Lett ; 13(9): 1218-1225, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236076

RESUMEN

Gene therapy has emerged as a potent tool for treating a wide range of hereditary and acquired disorders. However, the development of high-performance nonviral gene delivery vectors remains a significant challenge. Here we report the development of a new type of star-shaped poly(ß-amino ester) (SPAE) through a "top-down" hydrolysis approach and demonstrate its exceptional DNA transfection efficiency and safety profiles. Two SPAEs with different monomer combinations are first synthesized using an "arm first" strategy and then hydrolyzed sequentially to produce h-SPAEs with varied chemical compositions and molecular weights. Results demonstrate that hydrolysis significantly influences the physiological characteristics of the resulting h-SPAEs and h-SPAE/DNA polyplexes. Dependent on the chemical composition, h-SPAEs with low to moderate hydrolysis degrees exhibit superior gene transfection efficiency and cell viability across various cell types. Notably, the leading candidate, h-SPAE-1-5h, achieves up to 88.8% gene transfection efficiency, which was 154-257% higher compared to SPAE-1. This study not only establishes an easy-to-operate "top-down" approach for reshaping the topological structure and chemical composition of SPAEs, but also identifies promising candidates for effective gene transfection. This strategy can be applied to other cationic polymers to enhance their gene transfection performance.


Asunto(s)
Supervivencia Celular , ADN , Polímeros , Transfección , Hidrólisis , Transfección/métodos , Humanos , Polímeros/química , ADN/química , ADN/genética , Supervivencia Celular/efectos de los fármacos , Células HEK293
15.
Nat Commun ; 15(1): 8045, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271653

RESUMEN

The anti-diabetic drug metformin is one of the most widely prescribed medicines in the world. Together with its degradation product guanylurea, it is a major pharmaceutical pollutant in wastewater treatment plants and surface waters. An operon comprising two genes of the ureohydrolase family in Pseudomonas and Aminobacter species has recently been implicated in metformin degradation. However, the corresponding proteins have not been characterized. Here we show that these genes encode a Ni2+-dependent enzyme that efficiently and specifically hydrolyzes metformin to guanylurea and dimethylamine. The active enzyme is a heteromeric complex of α- and ß- subunits in which only the α-subunits contain the conserved His and Asp residues for the coordination of two Ni2+ ions in the active site. A crystal structure of metformin hydrolase reveals an α2ß4 stoichiometry of the hexameric complex, which is unprecedented in the ureohydrolase family. By studying a closely related but more widely distributed enzyme, we find that the putative predecessor specifically hydrolyzes dimethylguanidine instead of metformin. Our findings establish the molecular basis for metformin hydrolysis to guanylurea as the primary pathway for metformin biodegradation and provide insight into the recent evolution of ureohydrolase family proteins in response to an anthropogenic compound.


Asunto(s)
Metformina , Níquel , Metformina/metabolismo , Metformina/química , Níquel/metabolismo , Níquel/química , Ureohidrolasas/metabolismo , Ureohidrolasas/genética , Ureohidrolasas/química , Cristalografía por Rayos X , Dominio Catalítico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Hidrólisis , Biodegradación Ambiental , Pseudomonas/enzimología , Pseudomonas/genética , Modelos Moleculares
16.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273238

RESUMEN

Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (µmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.


Asunto(s)
Antioxidantes , Digestión , Erythrina , Péptidos , Proteínas de Plantas , Hidrólisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Péptidos/química , Péptidos/metabolismo , Erythrina/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Subtilisinas/metabolismo , Subtilisinas/química , Estrés Oxidativo , Tracto Gastrointestinal/metabolismo
17.
Molecules ; 29(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274852

RESUMEN

The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological waste content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate. Herein, we examined various methods-alkaline hydrolysis, calcination, and NaOH hydrolysis-to better identify and determine the most efficient and effective process for producing bio-functional nano-sized hydroxyapatite. Through comprehensive chemical, physical, and biological assessments, including Raman spectroscopy and X-ray diffraction, we also optimized the extraction process. Our modified and innovative alkaline hydrolysis-calcination method yielded salmon-derived hydroxyapatite with a highly crystalline structure, an optimal Ca/P ratio, and excellent biocompatibility. The attractive nano-scale cellular/tissular properties and favorable molecular characteristics, particularly well-suited for bone repair, are comparable to or even surpass those of synthetic, human, bovine, and porcine hydroxyapatite, positioning it as a promising candidate for use in tissue engineering, wound healing, and regenerative medicine indications.


Asunto(s)
Huesos , Durapatita , Salmón , Animales , Durapatita/química , Huesos/química , Materiales Biocompatibles/química , Hidrólisis , Humanos , Regeneración Ósea , Difracción de Rayos X , Espectrometría Raman
18.
Bioresour Technol ; 412: 131401, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218366

RESUMEN

N-acetyl-D-glucosamine and its dimer are degradation products of chitin waste with great potential in therapeutic and agricultural applications. However, the hydrolysis of insoluble chitin by chitinases remains a major bottleneck. This study investigated the biochemical properties and catalytic mechanisms of PoChi chitinase obtained from Penicillium oxalicum with a focus on enhancing its efficiency during the degradation of insoluble chitin. Recombinant plasmids were engineered to incorporate chitin-binding (ChBD) and/or fibronectin III (FnIII) domains. Notably, PoChi-FnIII-ChBD exhibited the highest substrate affinity (Km = 2.7 mg/mL) and a specific activity of 15.4 U/mg, which surpasses those of previously reported chitinases. These findings highlight the potential of engineered chitinases in advancing industrial biotechnology applications and offer a promising approach to more sustainable chitin waste management.


Asunto(s)
Quitina , Quitinasas , Penicillium , Quitinasas/metabolismo , Quitinasas/genética , Quitina/metabolismo , Penicillium/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Hidrólisis , Ingeniería de Proteínas/métodos , Solubilidad , Cinética
19.
Bioresour Technol ; 412: 131400, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218363

RESUMEN

Dynamic transformation of dissolved organic matter (DOM) contributes to short-chain fatty acids (SCFAs) production during anaerobic digestion. However, the impact of refined transformation of DOM ranked by molecular weight (MW) on SCFAs has never been investigated. Results indicated that DOM conversion order was 3500-7000 Da>(MW>14000 Da) > 7000-4000 Da during hydrolysis stage, while it was independent of their MW in acidogenesis phase and followed a low to high MW order during methanogenesis stage. Proteins-like DOMs with different MW were closely related to SCFAs. Eight groups of microorganisms (e.g., Bacillus and Caldicoprobacter) responsible for the conversion of proteins-like DOMs to SCFAs. The possible routes linking environmental properties to microorganisms-proteins-like DOMs-SCFAs connections were constructed. Microbial activity modifications by regulating moisture, pH, NO3--N and NH4+-N can expedite the conversion of proteins-like DOMs to SCFAs. The study emphasizes the importance of MW-classification-based biotransformation of organic waste, offering a potential strategy to enhance anaerobic digestion performance.


Asunto(s)
Ácidos Grasos Volátiles , Peso Molecular , Ácidos Grasos Volátiles/metabolismo , Anaerobiosis , Compuestos Orgánicos/metabolismo , Bacterias/metabolismo , Biotransformación , Hidrólisis , Reactores Biológicos
20.
Bioresour Technol ; 412: 131394, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218365

RESUMEN

Biodiesel serves as a crucial biofuel alternative to petroleum-based diesel fuels, achieved through enzymatic transesterification of oil substrates. This study aims to investigate stabilized lipase (LP) within calcium carbonate (CaCO3) microparticles as a catalyst for solvent-free transesterification in biodiesel synthesis. The specific hydrolysis activity of the in-situ immobilized LP was 66% of that of free LP. However, the specific transesterification activity of immobilized LP in the solvent-free phase for biodiesel production was 2.29 times higher than that of free LP. These results suggest that the interfacial activation of LP molecules is facilitated by the inorganic CaCO3 environment. The immobilized LP demonstrated higher biodiesel production levels with superior stability compared to free LP, particularly regarding methanol molar ratio and temperature. To the best of our knowledge, there are no previous reports on the in-situ immobilization of LP in a CaCO3 carrier without any crosslinker as an interfacial-activated biocatalyst for biodiesel production.


Asunto(s)
Biocombustibles , Carbonato de Calcio , Enzimas Inmovilizadas , Lipasa , Solventes , Carbonato de Calcio/química , Lipasa/metabolismo , Lipasa/química , Esterificación , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Solventes/química , Temperatura , Estabilidad de Enzimas , Metanol/química , Hidrólisis , Activación Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA