Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.453
Filtrar
1.
Food Chem ; 462: 140926, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208741

RESUMEN

Sturgeon, with 4 times higher lipid content than silver carp (ubiquitously applied for surimi production in China), affects surimi gelling properties. However, how the flesh lipids affect gelling properties remains unclear. This study investigated how flesh lipids impact surimi gelling properties and elucidated the interaction mechanism between lipids and proteins. Results revealed yellow meat contains 7 times higher lipids than white meat. Stronger ionic protein-protein interactions were replaced by weaker hydrophobic forces and hydrogen bonds in protein-lipid interaction. Protein-lipid interaction zones encapsulated lipid particles, changing protein structure from α-helix to ß-sheet structure thereby gel structure becomes flexible and disordered, significantly diminishing surimi gel strength. Docking analysis validated fatty acid mainly binding at Ala577, Ile461, Arg231, Phe165, His665, and His663 of myosin. This study first reported the weakened surimi gelling properties from the perspective of free fatty acids and myosin interactions, offering a theoretical basis for sturgeon surimi production.


Asunto(s)
Proteínas de Peces , Peces , Geles , Lípidos , Animales , Geles/química , Lípidos/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Productos Pesqueros/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Miosinas/química , Miosinas/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Carpas/metabolismo , Unión Proteica
2.
Food Chem ; 462: 141004, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216378

RESUMEN

This study assessed the effect of konjac glucomannan (KGM) on the aggregation of soy protein isolate (SPI) and its gel-related structure and properties. Raman results showed that KGM promoted the rearrangement of SPI to form more ß-sheets, contributing to the formation of an ordered structure. Atomic force microscopy, confocal laser scanning microscopy, and small-angle X-ray scattering results indicated that KGM reduced the size of SPI particles, narrowed their size distribution, and loosened the large aggregates formed by the stacking of SPI particles, improving the uniformity of gel system. As the hydrogen bonding between the KGM and SPI molecules enhanced, a well-developed network structure was obtained, further reducing the immobilized water's content (T22) and increasing the water-holding capacity (WHC) of SPI gel. Furthermore, this gel structure showed improved gel hardness and resistance to both small and large deformations. These findings facilitate the design and production of SPI-based gels with desired performance.


Asunto(s)
Geles , Mananos , Proteínas de Soja , Proteínas de Soja/química , Mananos/química , Geles/química , Tamaño de la Partícula , Agregado de Proteínas
3.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181635

RESUMEN

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Asunto(s)
Contaminantes Atmosféricos , Geles , Contaminantes Atmosféricos/química , Geles/química , Atmósfera/química , Adsorción , Dióxido de Carbono/química , Restauración y Remediación Ambiental/métodos , Dióxido de Silicio/química
4.
Carbohydr Polym ; 346: 122668, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245519

RESUMEN

Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.


Asunto(s)
Geles , Enlace de Hidrógeno , Pectinas , Pectinas/química , Geles/química , Polisacáridos/química , Simulación de Dinámica Molecular , Citrus/química , Interacciones Hidrofóbicas e Hidrofílicas
5.
Nat Commun ; 15(1): 7773, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237499

RESUMEN

The ability to transform matter between numerous physical states or shapes without wires or external devices is a major challenge for robotics and materials design. Organisms can transform their shapes using biomolecules carrying specific information and localize at sites where transitions occur. Here, we introduce gel automata, which likewise can transform between a large number of prescribed shapes in response to a combinatorial library of biomolecular instructions. Gel automata are centimeter-scale materials consisting of multiple micro-segments. A library of DNA activator sequences can each reversibly grow or shrink different micro-segments by polymerizing or depolymerizing within them. We develop DNA activator designs that maximize the extent of growth and shrinking, and a photolithography process for precisely fabricating gel automata with elaborate segmentation patterns. Guided by simulations of shape change and neural networks that evaluate gel automata designs, we create gel automata that reversibly transform between multiple, wholly distinct shapes: four different letters and every even or every odd numeral. The sequential and repeated metamorphosis of gel automata demonstrates how soft materials and robots can be digitally programmed and reprogrammed with information-bearing chemical signals.


Asunto(s)
Resinas Acrílicas , ADN , Geles , Geles/química , ADN/química , Resinas Acrílicas/química , Redes Neurales de la Computación , Algoritmos , Fenómenos Químicos , Secuencia de Bases
6.
Carbohydr Polym ; 345: 122589, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227113

RESUMEN

Maturity and drying treatment are important factors affecting the processing characteristics of lotus seeds and its starch. This study aimed to investigate the effect of maturity (from low to high-M-1, M-2, M-3, M-4) on far-infrared drying kinetics of lotus seeds, and on the variation of structure, gelation and digestive properties of lotus seed starch (LSS) before and after drying. As the maturity increased, the drying time reduced from 5.8 to 1.0 h. The reduction of drying time was correlated with the decrease of initial moisture content, the increase of water freedom and the destruction of tissue structure during ripening. The increased maturity and drying process altered the multiscale structure of LSS, including an increase in amylose content, disruption of the short-range structure, and a decrease in relative crystallinity and molecular weight. The viscosity, pasting temperature and enthalpy of LSS decreased during ripening, and drying treatment caused the further decrease. The digestibility of LSS increased during ripening and drying. Lotus seeds at M-4 would be optimal for obtaining shorter drying time, lower pasting temperature and enthalpy, and higher digestibility. This study provided theoretical guidance for achieving effective drying process and screening LSS with suitable processing properties through maturity sorting.


Asunto(s)
Lotus , Semillas , Almidón , Semillas/química , Lotus/química , Almidón/química , Desecación/métodos , Viscosidad , Amilosa/química , Peso Molecular , Digestión , Geles/química , Agua/química , Temperatura , Estructura Molecular
7.
Food Res Int ; 195: 114944, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277222

RESUMEN

The gelation of milk proteins can be achieved by various means, enabling the development of diverse products. In this study, heat-set milk protein gels (15 % protein) of diverse textures were made by pH modulation and two gels were selected for dynamic in vitro gastric digestion: a spoonable soft gel (SG, pH 6.55' G' of ∼100 Pa) and a sliceable firm gel (FG, pH 5.65; G' of ∼7000 Pa). The two gels displayed markedly different structural changes and digestion kinetics during gastric digestion. The SG underwent substantial structural compaction during the first 120 min of gastric digestion into a denser and firmer gastric chyme (26.3 % crude protein, G* of ∼8500 Pa) than the chyme of the FG (15.7 % crude protein, G* of ∼3000 Pa). These contrasting intragastric structural changes of the gels reversed their original textural differences, which led to slower digestion and gastric emptying of proteins from the SG compared with the FG. The different intragastric pH profiles during the digestion of the two gels likely played a key role by modulating the proteolytic activity and specificity (to κ-casein) of pepsin. Preferential early cleavage of κ-casein in SG stimulated coagulation and compaction of solid chyme, whereas rapid hydrolysis of αS- and ß-caseins in the FG weakened coagulation. This study provided new insights into controlling the structural development of dairy-based foods during gastric digestion and modulating digestion kinetics.


Asunto(s)
Digestión , Geles , Calor , Proteínas de la Leche , Geles/química , Digestión/fisiología , Concentración de Iones de Hidrógeno , Cinética , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Vaciamiento Gástrico , Caseínas/química , Caseínas/metabolismo , Pepsina A/metabolismo , Animales , Manipulación de Alimentos/métodos , Proteolisis
8.
Food Res Int ; 195: 114980, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277243

RESUMEN

The thermal sterilization process of protein beverages inevitably leads to the formation of insoluble thermal aggregates, greatly reducing the texture and taste of protein beverages. In this study, homogenized egg white (HEW) was obtained by ultrahigh-high-pressure (UHP) homogenization pretreatment of egg white (EW), and then a special egg white fluid gel (EWFG) was prepared by water bath heating. The results showed that the optimal conditions for preparing EWFG were three cycles at 20 MPa homogenizing pressure and heating in a water bath at 72℃ for 10 min. Under these conditions, the EWFG was a milky-white homogeneous liquid with an average particle size of about 560 nm. Measurements of the physicochemical properties of HEW and EWFG showed that the UHP homogenization treatment reduced the viscosity of HEW, decreased the particle size of protein aggregates, and increased the zeta potential, which altered the interactions of proteins during the subsequent heating process and facilitated the formation of homogeneous and dispersed EWFG. EWFG showed good stability at pH 6-10 and in low-concentration saline and medium-concentration sucrose solutions. The EWFG obtained by the present treatment is more suitable for factory-scale production and has great potential for protein beverage applications.


Asunto(s)
Clara de Huevo , Manipulación de Alimentos , Geles , Calor , Tamaño de la Partícula , Presión , Geles/química , Manipulación de Alimentos/métodos , Clara de Huevo/química , Viscosidad , Concentración de Iones de Hidrógeno , Calefacción , Proteínas del Huevo/química
9.
Food Res Int ; 195: 114988, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277259

RESUMEN

This study investigated the effect of gellan gum (GG) and glucono-δ-lactone (GDL) on the acid-induced gel properties of pea protein isolate (PPI) pretreated with media milling. The inclusion of GG substantially enhanced the gel hardness of PPI gel from 18.69 g to 792.47 g though slightly reduced its water holding capacity (WHC). Rheological analysis showed that GG increased storage modulus (G') and decreased damping factor of gels in the small amplitude oscillatory shear region and transformed its strain thinning behavior into weak strain overshoot behavior in the large amplitude oscillatory shear region. SEM revealed that GG transformed the microstructure of gel from a uniform particle aggregate structure to a chain-like architecture composed of filaments with small protein particles attached. Turbidity and zeta potential analysis showed that GG promoted the transformation of PPI from a soluble polymer system to an insoluble coagulant during acidification. When GG content was relatively high (0.2 %-0.3 %), high GDL content increased the electrostatic interaction between PPI and GG molecules, causing their rapid aggregation into a dense irregular aggregate structure, further enhancing gel strength and WHC. Overall, GG and GDL can offer the opportunity to modulate the microstructure and gel properties of acid-induced PPI gels, presenting potential for diversifying food gel design strategies through PPI-GG hybrid systems.


Asunto(s)
Geles , Gluconatos , Lactonas , Proteínas de Guisantes , Polisacáridos Bacterianos , Reología , Polisacáridos Bacterianos/química , Lactonas/química , Geles/química , Gluconatos/química , Proteínas de Guisantes/química , Concentración de Iones de Hidrógeno
10.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273336

RESUMEN

The objective of the study was to develop a novel topical gel by mixing Potentilla tormentilla ethanolic extract, thermosensitive poloxamer 407, and carbomer 940 and evaluating its stability and rheological behavior. The irritation potential of the gel was evaluated in accordance with the Organization for Economic Cooperation and Development Guidelines 404. The potential anti-inflammatory effects of the developed gel were evaluated in vivo in rats using the carrageenan-induced paw edema test. Moreover, the in silico binding affinity for chlorogenic and ellagic acid, as dominant components in the extract, against cyclooxygenase (COX) 1 and 2 was also determined. Our findings suggest that the gel containing Potentilla tormentilla extract remained stable throughout the observation period, exhibited pseudoplastic behavior, and caused no irritation in rats, thus being considered safe for topical treatment. Additionally, the developed gel showed the capability to reduce rat paw edema, which highlights significant anti-inflammatory potential. In silico analysis revealed that chlorogenic and ellagic acid exhibited a reduced binding affinity against COX-1 but had a similar inhibitory effect on COX-2 as flurbiprofen, which was confirmed by molecular dynamics results. The study proposes the possible application of Potentilla tormentilla ethanolic extract gel for the alleviation of localized inflammatory diseases; however, future clinical evaluation is required.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 1 , Edema , Extractos Vegetales , Potentilla , Animales , Potentilla/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Masculino , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/química , Geles/química , Ácido Elágico/farmacología , Ácido Elágico/química , Ciclooxigenasa 2/metabolismo , Carragenina , Ratas Wistar , Poloxámero/química , Resinas Acrílicas/química , Ácido Clorogénico/química , Ácido Clorogénico/farmacología
11.
Sci Rep ; 14(1): 21100, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256460

RESUMEN

This study aimed to evaluate chitosan (CS)-based formulations loaded with 5% sodium fluoride (NaF) and/or 10% nanohydroxyapatite (nHA) to remineralize the demineralized primary tooth enamel surface. Ninety enamel blocks were demineralized and were divided into six groups (n = 15): (1) CS-based hydrogel, (2) CS-based hydrogel loaded with NaF, (3) CS-based hydrogel loaded with nHA, (4) CS-based hydrogel loaded with NaF and nHA, (5) 5% NaF varnish, and (6) negative control with no intervention. After intervention, the specimens were pH cycled by 2 h immersion in demineralizing solution and 22 h immersion in remineralizing solution for 8 days. The remineralization effects were evaluated by Vickers microhardness measurements and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (FESEM-EDS). The best mean ± SD percentage microhardness recovery in remineralized enamel (%REMH) was found in group 4 (56.90 ± 5.49). The %REMH of groups 2 (30.74 ± 3.51) and 5 (29.23 ± 5.65) were statistically the same (p = 0.943). FESEM images confirmed partial coverage of the porous demineralized enamel with a newly formed mineralized layer. Based on EDS findings, the Ca/P ratio values of the treated enamel surfaces with CS-based hydrogels ranged between 1.71 and 1.87, and the highest F content was noticed in group 2 (1.02 ± 0.03). Although, all tested CS-based hydrogels demonstrated the potential to repair demineralized enamel, nHA- and NaF-containing CS-based hydrogel showed the highest remineralization effect. We infer that this new hybrid hydrogel is a potentially useful dental material for tooth biomineralization.


Asunto(s)
Quitosano , Esmalte Dental , Fluoruro de Sodio , Quitosano/química , Quitosano/farmacología , Fluoruro de Sodio/farmacología , Esmalte Dental/efectos de los fármacos , Esmalte Dental/química , Concentración de Iones de Hidrógeno , Humanos , Remineralización Dental/métodos , Fluoruros Tópicos/farmacología , Fluoruros Tópicos/administración & dosificación , Durapatita/química , Durapatita/farmacología , Hidrogeles/química , Biomineralización/efectos de los fármacos , Desmineralización Dental/prevención & control , Microscopía Electrónica de Rastreo , Geles/química
12.
ACS Appl Mater Interfaces ; 16(36): 47294-47302, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219058

RESUMEN

Reducing unnecessary blood loss in hemostasis is a major challenge for traditional hemostatic materials due to uncontrolled blood absorption. Tuning the hydrophilic and hydrophobic properties of hemostatic materials provides a road to reduce blood loss. Here, we developed a superhydrophobic aerogel that enabled remarkably reduced blood loss. The aerogel was fabricated with polydopamine-coated and fluoroalkyl chain-modified bacterial cellulose via a directional freeze-drying method. Primarily, the hydrophobic feature prevented blood from uncontrolled absorption by the material and overflowing laterally. Additionally, the aerogel had a dense network of channels that allowed it to absorb water from blood due to the capillary effect, and fluoroalkyl chains trapped the blood cells entering the channels to form a compact barrier via hydrophobic interaction at the bottom of the aerogel, causing quick fibrin generation and blood coagulation. The animal experiments reveal that the aerogel reduced the hemostatic time by 68% and blood loss by 87 wt % compared with QuikClot combat gauze. The study demonstrates the superiority of superhydrophobic aerogels for hemostasis and provides new insights into the development of hemostatic materials.


Asunto(s)
Celulosa , Hemostasis , Hemostáticos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Celulosa/química , Celulosa/farmacología , Animales , Nanofibras/química , Hemostáticos/química , Hemostáticos/farmacología , Hemostasis/efectos de los fármacos , Geles/química , Polímeros/química , Polímeros/farmacología , Ratones , Humanos , Coagulación Sanguínea/efectos de los fármacos , Indoles/química
13.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 235-243, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39262266

RESUMEN

Recent research has emphasized the development of efficient drug delivery systems to facilitate the delivery of biological compounds such as polyphenols via skin absorption. Phytozomes have been employed as carriers of plant compounds in this context Hydrogen bonding between plant polyphenols and the phospholipid phosphate group enables efficient encapsulation of potent compounds for enhanced drug delivery systems. Additionally, the strong affinity of phytosomes for the skin's phospholipids enhances skin absorption. In this study, phytosomes were initially formulated using the thin-layer hydration method After optimizing the synthetic parameters, phytosomes were loaded with Resveratrol and Quercetin for enhanced delivery and skin absorption potential to assess the characteristics of the synthesized phytosomes, tests were conducted to determine particle distribution and size, zeta potential, and examine the microstructure morphology using a scanning electron microscope (SEM). Furthermore, a siloxane gel base was formulated in this study, and the stability of the physicochemical and biological properties of the final prepared nanoformulation was investigated. The results of this study indicated that the formulated phytosomes exhibit optimal characteristics for facilitating high skin penetration of resveratrol and quercetin. A high skin absorption was observed after 60 days of synthesis. Additionally, the base of the siloxane gel can play a significant role in preventing the formation of scars by reducing the passage of water vapor.


Asunto(s)
Cicatriz , Geles , Quercetina , Resveratrol , Siloxanos , Resveratrol/química , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Geles/química , Siloxanos/química , Quercetina/química , Quercetina/administración & dosificación , Quercetina/farmacocinética , Absorción Cutánea/efectos de los fármacos , Tamaño de la Partícula , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Piel/efectos de los fármacos , Fitoquímicos/química , Fitosomas
14.
Int J Biol Macromol ; 278(Pt 4): 135281, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39256126

RESUMEN

Particle concentrations (w) and oil content (Φ) are crucial factors influencing the gel stability of Pickering emulsions. To understand the stabilization mechanism comprehensively, we prepared emulsion gels stabilized by CNF/DMY composite particles at various w (0.5-1.5 wt%) and Φ (0.2-0.6, v/v). The microstructure revealed the adsorption of these particles at the oil-water interface, with excess particles forming a three-dimensional network structure in the continuous phase. Rheological studies showed that the network structure of Pickering emulsions was significantly influenced by w and Φ, resulting in improved emulsion gel strength that hindered the movement of oil droplets and oxygen in the continuous phase, thereby enhancing emulsion stability. Three scenarios for the critical strain (γco) were observed: at Φ = 0.2, γco decreased with increasing w, while at Φ = 0.4, γco increased with increasing w. At Φ = 0.6, γco remained relatively constant regardless of w. In conclusion, adjusting particle concentration and oil content enabled the control of microstructure, rheological properties, and antioxidant capacity of emulsion gels. These findings could be a valuable resource for formulating and ensuring the quality of emulsion gel-based products in the food industry.


Asunto(s)
Celulosa , Emulsiones , Geles , Nanofibras , Oxidación-Reducción , Reología , Emulsiones/química , Nanofibras/química , Geles/química , Celulosa/química , Flavonoles/química , Antioxidantes/química
15.
J Chromatogr A ; 1735: 465313, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39241402

RESUMEN

In this study, we synthesized and employed an ionic gel-functionalized silica stationary phase for high-performance liquid chromatography. The successful fabrication of the stationary phase was confirmed through attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, and elemental analysis (EA). Comparative performance evaluation against a commercial column demonstrated the prepared column's effectiveness in the mixed mode of reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and ion chromatography (IC). Moreover, the stationary phase exhibited exceptional retention repeatability in per aqueous liquid chromatography, showcasing its potential as an environmentally friendly analytical method. Mechanistic investigations unveiled multiple solute-stationary phase interactions, including π-π interactions, hydrogen bonding, and ion exchange. Finally, we applied the developed stationary phase for the precise detection of preservatives in carbonated beverages and jelly, achieving high levels of accuracy and recovery rates.


Asunto(s)
Cromatografía de Fase Inversa , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía de Fase Inversa/métodos , Cromatografía por Intercambio Iónico/métodos , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Geles/química
16.
J Chromatogr A ; 1735: 465347, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39244914

RESUMEN

Metal-organic frameworks (MOFs) are promising materials for sample pretreatment. The performance improvement of powdered MOFs is hindered by their aggregation and difficult recovery. To overcome these issues, a biodegradable lightweight spherical aerogel was used as a support for the in situ growth of copper-based MOFs (MOF-199). Furthermore, Fe3O4 nanoparticles were incorporated into the aerogel to achieve magnetic properties. Thus, hybrid aerogel spheres containing MOF-199 supported on magnetic oxidized cellulose nanofiber/carboxymethyl chitosan (MOF-199@mag-CNF/CMC) were fabricated. The effects of Fe3O4 loading amount and organic-ligand concentration on the properties (spherical geometry and mechanical strength) of the hybrid aerogel spheres were studied. Their potential application in the extraction of benzodiazepines (BZPs) from urine samples prior to liquid chromatography-mass spectrometry was evaluated. The highly dispersed MOF-199 crystals on the spherical aerogel effectively overcame the inherent structural shrinkage of the bare aerogel spheres; thus, the MOF-199@mag-CNF/CMC aerogel spheres were robust and could withstand repeated use for at least eight consecutive extraction cycles. Further, MOF-199@mag-CNF/CMC exhibited improved BZP extraction efficiency, which was 2.5-11.6 times higher than that of bare Cu2+@mag-CNF/CMC aerogel spheres, primarily due to additional π-π interaction and H-bonding as well as improved specific surface area. Parameters influencing the extraction and desorption processes were also comprehensively investigated. Under optimal conditions, this method provided a wide linear range of 0.1-10 µg/L (R2 > 0.995) and good precision (2.8-6.7% for intra-day; 1.9-7.8 % for inter-day). The limits of detection and quantification ranged from 0.02 to 0.11 µg/L and from 0.06 to 0.33 µg/L, respectively. The recoveries for the urine samples spiked with three concentrations of BZPs ranged from 73.9 % to 114.1 %. The proposed method is simple, sensitive and eco-friendly and can be used for the determination of BZPs from urine for clinical and forensic examinations.


Asunto(s)
Benzodiazepinas , Celulosa , Quitosano , Estructuras Metalorgánicas , Extracción en Fase Sólida , Extracción en Fase Sólida/métodos , Estructuras Metalorgánicas/química , Celulosa/química , Celulosa/análogos & derivados , Quitosano/química , Benzodiazepinas/orina , Benzodiazepinas/química , Benzodiazepinas/aislamiento & purificación , Humanos , Límite de Detección , Geles/química , Reproducibilidad de los Resultados
17.
ACS Biomater Sci Eng ; 10(9): 5764-5773, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39190529

RESUMEN

Alveolar bone defect reconstruction is a common challenge in stomatology. To address this, a thermosensitive/photosensitive gelatin methacrylate (GelMA) gel was developed based on various air solubilities and light-curing technologies. The gel was synthesized by using a freeze-ultraviolet (FUV) method to form a porous and quickly (within 15 min) solidifying modified network structure. Unlike other gel scaffolds limited by complex preparation procedures and residual products, this FUV-GelMA gel shows favorable manufacturing ability, promising biocompatibility, and adjustable macroporous structures. The results from a rat model suggested that this gel scaffold creates a conducive microenvironment for mandible reconstruction and vascularization. In vitro experiments further confirmed that the FUV-GelMA gel promotes osteogenic differentiation of human bone marrow mesenchymal stem cells and angiogenesis of human umbilical vein endothelial cells. Investigation of the underlying mechanism focused on the p38 mitogen-activated protein kinase (MAPK) pathway. We found that SB203580, a specific inhibitor of p38 MAPK, abolished the therapeutic effects of the FUV-GelMA gel on osteogenesis and angiogenesis, both in vitro and in vivo. These findings introduced a novel approach for scaffold-based tissue regeneration in future clinical applications.


Asunto(s)
Gelatina , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Metacrilatos , Neovascularización Fisiológica , Osteogénesis , Andamios del Tejido , Rayos Ultravioleta , Gelatina/química , Gelatina/farmacología , Osteogénesis/efectos de los fármacos , Humanos , Animales , Metacrilatos/química , Metacrilatos/farmacología , Porosidad , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Andamios del Tejido/química , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos , Diferenciación Celular/efectos de los fármacos , Congelación , Masculino , Geles/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Angiogénesis
18.
Biomed Phys Eng Express ; 10(5)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39151446

RESUMEN

This study aims to evaluate the optical response dependence of the PAKAG polymer gel dosimeter on photon energy and dose rate. The produced gel dosimeters were irradiated using a Varian CL 21EX medical linear accelerator with delivered doses of 0, 2, 4, 6, 8, and 10 Gy. To examine the response dependence on the delivered dose rate, dose rates of 50, 100, 200, and 350 cGy min-1were investigated. Additionally, two incident beam qualities of 6 and 18 MV were examined to study the response dependence on the incident beam energy. The irradiated polymer gel dosimeters were readout using a UV-vis spectrophotometer in the 300 to 800 nm scan range. The results reveal that a wide variation in dose rate (50-350 cGy.min-1) influences the absorbance-dose response and the sensitivity of PAKAG gel. However, smaller variations did not show a significant effect on the response. Furthermore, the response changed insignificantly with beam quality for investigated energies. It was concluded that the optical reading response of the PAKAG polymer gel dosimeter is satisfactorily independent of external parameters, including dose rate and incident beam quality.


Asunto(s)
Geles , Polímeros , Dosímetros de Radiación , Polímeros/química , Geles/química , Radiometría/métodos , Radiometría/instrumentación , Fotones , Aceleradores de Partículas/instrumentación , Humanos , Relación Dosis-Respuesta en la Radiación , Diseño de Equipo
19.
Langmuir ; 40(35): 18451-18465, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39169662

RESUMEN

Skin can be damaged by intense and prolonged exposure to ultraviolet (UV) radiation. Photoaging and acute damage from sun exposure result in collagen degradation and enzymatic activity decline in the skin. Fucoidan (FUC) exhibits potential antiaging properties, including collagen synthesis promotion and enzyme activity inhibition. However, FUC's limited ability to penetrate the skin layers due to its large molecular weight makes it a challenge for topical application. In this study, we successfully developed a new approach by integrating thermoresponsive gel (TRG) containing FUC with solid microneedles (SMNs) as a delivery system. TRG is formulated using a combination of Pluronic F127 (PF127) and Pluronic F68 (PF68) polymers, while SMNs are made from a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers with a variety of cross-linkers. Based on the results of ex vivo testing, it was shown that more than 80% of FUC can be delivered using the optimized formula. Furthermore, the results of the in vitro blood hemolytic test showed that TRG-FUC-SMNs were relatively biocompatible. In vivo antiaging activity tests using a rat model exposed to UV for 14 days showed that histological assessment, skin elasticity measurement, wrinkle evaluation, and skin moisture content had no significant differences (p < 0.05) compared to the positive control group. In contrast, a significant difference (p < 0.05) was observed when comparing the TRG-FUC-SMNs group with the group that received only TRG-FUC without pretreatment and negative controls. These findings suggest that FUC has potential to be delivered using the TRG system in combination with SMNs to harness its antiaging properties.


Asunto(s)
Administración Cutánea , Geles , Agujas , Polisacáridos , Animales , Polisacáridos/química , Polisacáridos/administración & dosificación , Ratas , Geles/química , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Temperatura , Ratas Sprague-Dawley , Rayos Ultravioleta , Polímeros/química , Polímeros/farmacología , Poloxámero/química , Masculino , Prueba de Estudio Conceptual
20.
Food Chem ; 460(Pt 2): 140577, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094341

RESUMEN

Egg yolk production processed after separating egg white is a common method to shorten cycle, but its taste quality will change even the vitelline membrane is intact. This might be related to the slight non-destructive deformation causing redistribution and fusion of protein-lipid assemblies within the egg yolk spheres. We investigated the mechanism of the change in thermal gel properties under slight deformation. The results of microscopic structural morphology revealed that the whole boiled egg yolk (WEY) underwent a transition in protein-lipid assembly morphology within yolk spheres, which changed from local aggregation to disordered fusion in shaken boiled egg yolks (SEYs). The spectroscopic and physicochemical properties analysis demonstrated that the redistribution of protein-lipid assemblies gave rise to marked changes in water migration, texture properties, molecular interactions, and oral sensation simulation of egg yolk thermal gels. This is benefit to guide the regulation of the taste quality egg yolk products in industry.


Asunto(s)
Pollos , Proteínas del Huevo , Yema de Huevo , Geles , Lípidos , Yema de Huevo/química , Geles/química , Animales , Proteínas del Huevo/química , Lípidos/química , Calor , Culinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA