Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.694
Filtrar
1.
Dtsch Med Wochenschr ; 149(19): 1143-1150, 2024 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-39250952

RESUMEN

Infections with multidrug-resistant gram-negative bacterial species are a great concern in clinics in Germany. By limiting therapeutic options dramatically, these bacteria pose a significant threat to patient health and cause extensive pressure on hygiene systems and patient management. In Germany, the recommendations on how to deal with these bacteria are called MRGN classification, using the terms 3MRGN and 4MRGN for bacteria resistant to three or four major classes of antibiotics. To be resistant to this large number of antibiotics and become classified as 3MRGN or 4MRGN, bacterial strains need to acquire multiple resistance mechanisms with beta-lactamases, especially carbapenemases, being the most important ones. According to established surveillance systems like national reporting systems, KISS or the National Reference Centre, multidrug-resistant bacteria are constantly on the rise in Germany. Although several novel therapeutic options have been approved recently, these bacteria represent a constant challenge and it may be necessary to discuss if the present hygiene recommendations need an update for an efficient and targeted prevention of transmission.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Alemania , Humanos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Bacterias Gramnegativas/efectos de los fármacos , Prevalencia , Antibacterianos/uso terapéutico
3.
Dtsch Med Wochenschr ; 149(19): 1151-1157, 2024 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-39250953

RESUMEN

Epidemiological studies show that the care of patients in rooms with a previous stay by a person with evidence of multi-resistant pathogens (MRP) is associated with an increased risk of these pathogens occurring. The question therefore regularly arises as to whether MRP also exhibit resistance to the disinfectants used. To date, there are no standardised definitions for "resistance" to disinfectants. However, disinfectants authorised on the market are also effective against multi-resistant pathogens and the failure of efficient disinfection is mainly caused by application errors (insufficient cleaning, incomplete wetting, incorrect application concentration or exposure time etc.). The effectiveness of disinfectants depends on a variety of environmental factors (especially accompanying contamination). A reduced sensitivity to disinfectants can occur in individual isolates due to selection under sub-inhibitory concentrations of disinfectants. Resistance mechanisms to antibiotics do not mediate cross-resistance to disinfectants, but a change in the permeability of bacterial cells can influence sensitivity to disinfectants and antibiotics. In general, the success of routine disinfection can be improved by suitable process controls and contribute to reducing the transmission of MRP.


Asunto(s)
Desinfectantes , Desinfectantes/farmacología , Humanos , Desinfección/métodos , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple
4.
Dtsch Med Wochenschr ; 149(19): 1133-1142, 2024 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-39250951

RESUMEN

Multi-resistant bacteria such as Escherichia coli and Klebsiella pneumoniae are a growing threat worldwide. The spread of Carbapenemase-producing strains is particularly worrying. New antibiotics and combination therapies offer treatment options, but the development of resistant pathogens remains a major challenge.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Humanos , Antibacterianos/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/epidemiología
5.
Medicine (Baltimore) ; 103(36): e39462, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252304

RESUMEN

RATIONALE: Infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa are strongly associated with poor outcomes, including prolonged hospitalization and an increased risk of mortality. Antimicrobial options for the treatment of severe infections due to MDR P aeruginosa are quite limited, and treatment remains challenging. PATIENT CONCERNS: A 65-year-old woman presented to our orthopedic clinic with a 3-month history of progressive pain and stiffness in her left knee. Her primary care provider administered a hyaluronic acid injection, which unfortunately resulted in worsening symptoms. Subsequent treatment included a 1-month course of intravenous gentamicin and ceftriaxone, which failed to alleviate her symptoms. DIAGNOSIS: MDR P aeruginosa septic arthritis of the knee. The culture isolate was tested for susceptibility to multiple antibiotics. Magnetic resonance imaging evaluations were conducted, showing notable erosive and osteolytic changes around the joint surfaces that had progressed significantly. INTERVENTIONS: The patient underwent arthroscopic irrigation and synovectomy. The treatment regimen included a combination of intravenous colistin and piperacillin/tazobactam administered over a 6-week period. Total knee arthroplasty was performed 6 months later without additional antibiotic treatment. OUTCOMES: Patient's knee condition remained continuously stable without abnormal findings of inflammation. The patient's knee range of motion increased 0 to 125 degrees, her pain almost disappeared, and she was able to maintain activities of daily life. LESSONS: This case underscores the challenges of managing infections with MDR organisms in complex clinical scenarios, emphasizing the need for timely intervention and appropriate antibiotic therapy.


Asunto(s)
Antibacterianos , Artritis Infecciosa , Farmacorresistencia Bacteriana Múltiple , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Femenino , Anciano , Artritis Infecciosa/microbiología , Artritis Infecciosa/tratamiento farmacológico , Artritis Infecciosa/diagnóstico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/aislamiento & purificación , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Articulación de la Rodilla/microbiología
6.
Arch Microbiol ; 206(10): 399, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254720

RESUMEN

Antimicrobial resistance (AMR) is global health concern escalating rapidly in both clinical settings and environment. The effluent from pharmaceuticals and hospitals may contain diverse antibiotics, exerting selective pressure to develop AMR. To study the aquatic prevalence of drug-resistant staphylococci, sampling was done from river Yamuna (3 sites) and wastewater (7 sites) near pharmaceutical industries in Delhi-NCR, India. 59.25% (224/378) were considered presumptive staphylococci while, methicillin resistance was noted in 25% (56/224) isolates. Further, 23 methicillin-resistant coagulase negative staphylococci (MR-CoNS) of 8 different species were identified via 16S rRNA gene sequencing. Multidrug resistance (MDR) was noted in 60.87% (14/23) isolates. PCR based detection of antibiotic resistance genes revealed the number of isolates containing mecA (7/23), blaZ (6/23), msrA (10/23), aac(6')aph (2") (2/23), aph(3')-IIIa (2/23), ant(4')-Ia (1/23), dfrG (4/23), dfrA(drfS1) (3/23), tetK (1/23) and tetM (1/23). The current research highlights the concerning prevalence of MDR-CoNS in aquatic environment in Delhi.


Asunto(s)
Antibacterianos , Coagulasa , Farmacorresistencia Bacteriana Múltiple , ARN Ribosómico 16S , Staphylococcus , Aguas Residuales , India/epidemiología , Aguas Residuales/microbiología , Staphylococcus/genética , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Staphylococcus/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Coagulasa/metabolismo , Coagulasa/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Prevalencia , Pruebas de Sensibilidad Microbiana
7.
Microb Genom ; 10(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222339

RESUMEN

While conducting genomic surveillance of carbapenemase-producing Enterobacteriaceae (CPE) from patient colonisation and clinical infections at Birmingham's Queen Elizabeth Hospital (QE), we identified an N-type plasmid lineage, pQEB1, carrying several antibiotic resistance genes, including the carbapenemase gene bla KPC-2. The pQEB1 lineage is concerning due to its conferral of multidrug resistance, its host range and apparent transmissibility, and its potential for acquiring further resistance genes. Representatives of pQEB1 were found in three sequence types (STs) of Citrobacter freundii, two STs of Enterobacter cloacae, and three species of Klebsiella. Hosts of pQEB1 were isolated from 11 different patients who stayed in various wards throughout the hospital complex over a 13 month period from January 2023 to February 2024. At present, the only representatives of the pQEB1 lineage in GenBank were carried by an Enterobacter hormaechei isolated from a blood sample at the QE in 2016 and a Klebsiella pneumoniae isolated from a urine sample at University Hospitals Coventry and Warwickshire (UHCW) in May 2023. The UHCW patient had been treated at the QE. Long-read whole-genome sequencing was performed on Oxford Nanopore R10.4.1 flow cells, facilitating comparison of complete plasmid sequences. We identified structural variants of pQEB1 and defined the molecular events responsible for them. These have included IS26-mediated inversions and acquisitions of multiple insertion sequences and transposons, including carriers of mercury or arsenic resistance genes. We found that a particular inversion variant of pQEB1 was strongly associated with the QE Liver speciality after appearing in November 2023, but was found in different specialities and wards in January/February 2024. That variant has so far been seen in five different bacterial hosts from six patients, consistent with recent and ongoing inter-host and inter-patient transmission of pQEB1 in this hospital setting.


Asunto(s)
Brotes de Enfermedades , Plásmidos , beta-Lactamasas , Humanos , Plásmidos/genética , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Bacterianas/genética , Enterobacter cloacae/genética , Enterobacter cloacae/aislamiento & purificación , Enterobacter cloacae/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Infección Hospitalaria/microbiología , Antibacterianos/farmacología , Citrobacter freundii/genética , Citrobacter freundii/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Hospitales , Enterobacter
8.
PeerJ ; 12: e18023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224828

RESUMEN

Background: Hemorrhoids are common conditions at or around the anus, to which numerous people suffer worldwide. Previous research has suggested that microbes may play a role in the development of hemorrhoids, and the origins of these microbes have been preliminarily investigated. However, no detailed research on the microbes related to hemorrhoid patients has been conducted. This work aims to provide an initial investigation into the microbes related to hemorrhoid patients with high quality whole genome sequencing. Methods: Forty-nine bacterial strains were isolated from seven hemorrhoid patients. Third-generation nanopore sequencing was performed to obtain high quality whole genome sequences. The presence of plasmids, particularly new plasmids, along with antibiotic resistance genes, was investigated for these strains. Phylogenetic analysis and genome comparisons were performed. Results: Out of the 31 plasmids found in the strains, 15 new plasmids that have not been observed previously were discovered. Further structural analysis revealed new multidrug-resistant conjugative plasmids, virulent plasmids, and small, high-copy mobile plasmids that may play significant functional roles. These plasmids were found to harbor numerous integrases, transposases, and recombinases, suggesting their ability to quickly obtain genes to change functions. Analysis of antibiotic resistance genes revealed the presence of antibiotic resistant-integrons. Together with the surprising number of new plasmids identified, as well as the finding of transmission and modification events for plasmids in this work, we came to the suggestion that plasmids play a major role in genetic plasticity. Conclusion: This study reveals that the diversity of plasmids in human-associated microbes has been underestimated. With the decreasing cost of whole-genome sequencing, monitoring plasmids deserves increased attention in future surveillance efforts.


Asunto(s)
Bacterias , Hemorroides , Filogenia , Plásmidos , Humanos , Plásmidos/genética , Hemorroides/microbiología , Hemorroides/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Secuenciación Completa del Genoma , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Adulto
9.
Front Cell Infect Microbiol ; 14: 1444031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282498

RESUMEN

Tigecycline is a last-resort drug used to treat serious infections caused by multidrug-resistant bacteria. tet(X4) is a recently discovered plasmid-mediated tigecycline resistance gene that confers high-level resistance to tigecycline and other tetracyclines. Since the first discovery of tet(X4) in 2019, it has spread rapidly worldwide, and as a consequence, tigecycline has become increasingly ineffective in the clinical treatment of multidrug-resistant infections. In this study, we identified and analyzed tet(X4)-positive Escherichia coli isolates from duck farms in Hunan Province, China. In total, 976 samples were collected from nine duck farms. Antimicrobial susceptibility testing and whole-genome sequencing (WGS) were performed to establish the phenotypes and genotypes of tet(X4)-positive isolates. In addition, the genomic characteristics and transferability of tet(X4) were determined based on bioinformatics analysis and conjugation. We accordingly detected an E. coli strain harboring tet(X4) and seven other resistance genes in duck feces. Multi-locus sequence typing analysis revealed that this isolate belonged to a new clone, and subsequent genetic analysis indicated that tet(X4) was carried in a 4608-bp circular intermediate, flanked by ISVsa3-ORF2-abh elements. Moreover, it exhibited transferability to E. coli C600 with a frequency of 10-5. The detection of tet(X4)-harboring E, coli strains on duck farms enhances our understanding of tigecycline resistance dynamics. The transferable nature of the circular intermediate of tet(X4) contributing to the spread of tigecycline resistance genes poses a substantial threat to healthcare. Consequently, vigilant monitoring and proactive measures are necessary to prevent their spread.


Asunto(s)
Antibacterianos , Patos , Infecciones por Escherichia coli , Escherichia coli , Granjas , Pruebas de Sensibilidad Microbiana , Plásmidos , Tigeciclina , Secuenciación Completa del Genoma , Patos/microbiología , Tigeciclina/farmacología , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Antibacterianos/farmacología , China , Plásmidos/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Tipificación de Secuencias Multilocus , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Enfermedades de las Aves de Corral/microbiología , Proteínas de Escherichia coli/genética , Transferencia de Gen Horizontal , Farmacorresistencia Bacteriana/genética
10.
PLoS One ; 19(9): e0300979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283918

RESUMEN

As the effectiveness of current treatments against the development of antimicrobial resistance is declining, new strategies are required. A great source of novel secondary metabolites with therapeutics effects are the endophytic bacteria present in medicinal plants. In this study, Klebsiella aerogenes (an endophytic bacteria belonging to the Enterobacteriaceae family) was isolated from Kalanchoe blossfeldiana (a medicinal plant". The bacterial secondary metabolites were identified using GC-MS techniques. Furthermore, the antibacterial potentials were investigated against multi-drug resistance (MDR) Salmonella typhi and Staphylococcus aureus. The GC-MS chromatogram of K. aerogenes secondary metabolites extract displayed total of 36 compounds. Ethyl acetate extracts of K. aerogenes, showed mean zone of growth inhibition of 15.00 ± 1.00 against S. typhi and 7.00 ± 1.00mm against S. aureus, respectively. The extract demonstrated significant antibacterial effectiveness against S. typhi and moderate antibacterial efficacy against S. aureus, with minimum inhibitory concentration (MIC) values ranging from 0.089 to 0.39 mg/mL. The time-kill kinetics profile of the ethyl acetate extract against S. typhi revealed a decrease in the number of viable cells during the initial 5, 6, and 24 hours. Conversely, there was a sudden increase in viable cells up to 6 hours for S. aureus. The identified secondary metabolite with high percentage than others, benzeneethanamine exhibited favorable interactions (-7.2 kcal/mol) with the penicillin-binding protein (PBP2a) of S. aureus and (-7.5 kcal/mol) osmoporin (OmpC) of S. typhi, indicating its potential as a candidate for drug development against these MDR bacteria. This study reported for the first time, bacterial endophytes associated with K. blossfeldiana with antibacterial activities.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Enterobacter aerogenes , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterobacter aerogenes/efectos de los fármacos , Enterobacter aerogenes/metabolismo , Staphylococcus aureus/efectos de los fármacos , Salmonella typhi/efectos de los fármacos , Metabolismo Secundario , Extractos Vegetales/farmacología , Extractos Vegetales/química
11.
Nat Commun ; 15(1): 7936, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261449

RESUMEN

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.


Asunto(s)
Antibacterianos , Cloranfenicol , Escherichia coli , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Antibacterianos/farmacología , Cloranfenicol/farmacología , Azitromicina/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
12.
Commun Biol ; 7(1): 1122, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261709

RESUMEN

Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.


Asunto(s)
Antibacterianos , Colistina , Diterpenos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Animales , Antibacterianos/farmacología , Ratones , Diterpenos/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos
13.
BMC Infect Dis ; 24(1): 958, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261759

RESUMEN

BACKGROUND: Fournier's gangrene is a severe form of infectious necrotizing fasciitis affecting the perineum, perianal, and genital areas; it is associated with substantial morbidity and mortality. Hence, it is important to identify prognostic factors that can predict clinical outcomes and guide treatment strategies. Thus, our study aimed to analyze patient characteristics and determine prognostic factors affecting clinical outcomes in Fournier's gangrene. METHODS: This retrospective study involved examining medical records spanning 18 years for patients with Fournier's gangrene at our institution. Considering the exclusion criteria, data from 35 patients were included in this study. RESULTS: A total of 35 patients were included in the analysis. The mean age of the patients showed no statistically significant difference between the survivor and non-survivor groups. The Charlson Comorbidity Index, American Society of Anesthesiologists score, and Acute Physiology and Chronic Health Evaluation II score were not significantly different between the two groups. Notably, the initial Sequential Organ Failure Assessment score was significantly higher in the non-survivor group than that in the survivor group. The overall in-hospital mortality rate was 17.1%. Moreover, the prevalence of multidrug resistant bacterial infection was markedly higher in the non-survivor group than that in the survivor group. Coagulation dysfunction was significantly more prevalent in the non-survivor group than that in the survivor group, and had the most significant impact on in-hospital mortality. A multivariable logistic regression analysis identified multidrug resistant bacterial infection to be independently associated with high in-hospital mortality. CONCLUSIONS: Coagulation dysfunction and multidrug resistant bacterial infection were identified as independent negative prognostic factors, highlighting the need for prompt monitoring and proactive strategies against Fournier's gangrene.


Asunto(s)
Gangrena de Fournier , Humanos , Gangrena de Fournier/mortalidad , Gangrena de Fournier/patología , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Femenino , Pronóstico , Anciano , Antibacterianos/uso terapéutico , Adulto , Mortalidad Hospitalaria , Resultado del Tratamiento , Anciano de 80 o más Años , Farmacorresistencia Bacteriana Múltiple
14.
BMC Microbiol ; 24(1): 339, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261762

RESUMEN

BACKGROUND: Antimicrobial resistance is a major global public health issue. Infections caused by resistant species are associated with higher mortality rates, longer hospital stays, medication failure, and rising medical costs. The World Health Organisation has declared multidrug resistance-associated infections as an epidemic of public health concern. OBJECTIVE: This study aimed to evaluate the antimicrobial resistance profile and associated factors of hospital-acquired Gram-negative bacterial pathogens among hospitalized patients in Northeast Ethiopia. MATERIALS AND METHODS: A health facility-based cross-sectional study was conducted among hospitalized patients from March 2021 to February 2022. About 810 clinical specimens were collected, transported, and processed from admitted patients following the standard bacteriological procedures. The clinical samples were inoculated onto blood agar, MacConkey agar, and chocolate agar. Furthermore, the species identification was done using gram reactions, colony morphology, and color and biochemical tests. Antimicrobial susceptibility tests, extended-spectrum beta-lactamase, and carbapenemase production were performed as per the clinical laboratory standard institute guidelines. For analysis, the information was entered into Epi-data and exported to SPSS. A P value of < 0.05 with a 95% confidence interval was considered as a statistically significant association. RESULTS: Out of 810 clinical specimens, 285/810 (35.2%) developed bacterial infections. From the isolated bacteria, E. coli was the predominant bacteria accounting for 78/285 (27.4%) followed by K. pneumoniae, 69/285(24.42%), whereas P. vulgaris accounted for the least, 7/285 (2.5%). Overall, 132/285 (46.3%) and 99/285 (34.7%) of culture-positive patients were infected by extended-spectrum beta-lactamase and carbapenemase-producing bacteria. The overall multidrug resistance rate of the isolated bacteria was 89.4%. The highest antibiotic resistance rates were detected for doxycycline (92.9%), amoxicillin-clavulanic acid (83.9%), and ampicillin (93%). The least antibiotic resistance rate was observed for meropenem at 41.1% and amikacin at 1.7%, respectively. CONCLUSIONS AND RECOMMENDATIONS: In the study area, significant health concerns include a range of hospital-acquired bacterial infections associated with elevated rates of multidrug resistance, Extended-spectrum beta-lactamase (ESBL), and carbapenemase-producing bacterial pathogens. Consequently, it is recommended to conduct drug-susceptibility testing of isolates and molecular detection at a national level to optimize antibiotic usage for treating prevalent bacterial infections in this area.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Humanos , Etiopía/epidemiología , Estudios Transversales , Masculino , Femenino , Adulto , Persona de Mediana Edad , Antibacterianos/farmacología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Adulto Joven , Adolescente , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Anciano , Niño , Preescolar , Lactante , Hospitalización/estadística & datos numéricos , Proteínas Bacterianas/genética , Anciano de 80 o más Años
15.
Sci Rep ; 14(1): 21480, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277620

RESUMEN

Metformin is the most commonly prescribed medication for treating type 2 diabetes (T2D). It is known that metformin can alter the gut microbiome, which influences the effectiveness of metformin treatment. We posited that if the gut microbiome, a reservoir of the resistome, is altered, then the resistome should change as well. To test this hypothesis, we reanalyzed microbiome data generated by Wu et al. (Nat Med 23(7):850-858, 2017), identifying antibiotic resistance genes (ARGs) and bacterial species. Through read-based analysis, we observed that the abundance of ARGs indeed changed in many samples treated with metformin. Moreover, the altered pattern was sufficiently heterogeneous across individual samples to allow subcategorization. We also found a strong correlation between the abundance of multidrug-resistant ARGs (MDR-ARGs) and the presence of E. coli. The contig-based analysis led to the same conclusion: an increase in MDR-ARGs due to metformin was associated with an increase in E. coli. In relation to this, we were able to confirm that the majority of MDR-ARGs are likely to originate from E. coli. These results suggest that metformin may have the potential side effect of increasing E. coli carrying ARGs, particularly MDR-ARGs, which could be a concern in T2D therapy that relies on metformin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Escherichia coli , Microbioma Gastrointestinal , Metformina , Metformina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Hipoglucemiantes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/farmacología
16.
Narra J ; 4(2): e980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280315

RESUMEN

The emergence of multidrug-resistant (MDR) infections in wounds is a significant public health issue. The aim of this study was to investigate the prevalence and antimicrobial resistance profiles of MDR bacterial isolates in wound infections. Through a cross-sectional study, 1,035 bacterial isolates were collected from wound infection patients at Tugurejo Hospital in Semarang, Indonesia, over a three-year period (from January 2020 to December 2022). Initial identification involved Gram staining and colony morphology assessment, followed by biochemical assays and antimicrobial susceptibility testing using the VITEK®2 Compact system. Gram-negative bacteria constituted the majority of isolates (60.77%, n=629). The predominant strains included were Staphylococcus spp. (30.92%, n=320), Escherichia coli (18.45%, n=191), and Klebsiella pneumoniae (13.04%, n=135). Notably, Gram-negative bacteria exhibited a significantly higher likelihood of MDR development compared to their Gram-positive counterparts (p<0.001), with Gram-negative bacteria having a 2.05 times higher probability of acquiring MDR. These findings underscore the urgent need for comprehensive surveillance of antimicrobial resistance patterns and the implementation of tailored antimicrobial stewardship programs to address the pressing public health challenge of MDR wound infections. Further research is warranted to elucidate the complex interplay of factors contributing to MDR development in wound infections, thereby informing targeted intervention strategies and improving patient outcomes.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Infección de Heridas , Humanos , Indonesia/epidemiología , Estudios Transversales , Infección de Heridas/microbiología , Infección de Heridas/epidemiología , Infección de Heridas/tratamiento farmacológico , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Anciano
17.
Sci Rep ; 14(1): 20401, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223176

RESUMEN

Tuberculosis is a global public health concern. Earlier reports suggested the emergence of high rates of drug resistant tuberculosis in Egypt. This study included 102 isolates of Mycobacterium tuberculosis collected from two reference laboratories in Cairo and Alexandria. All clinical isolates were sub-cultured on Löwenstein-Jensen medium and analyzed using both BD BACTEC MGIT 960 SIRE Kit and standard diffusion disk assays to identify the antibiotic sensitivity profile. Extracted genomic DNA was subjected to whole genome sequencing (WGS) using Illumina platform. Isolates that belong to lineage 4 represented > 80%, while lineage 3 represented only 11% of the isolates. The percentage of drug resistance for the streptomycin, isoniazid, rifampicin and ethambutol were 31.0, 17.2, 19.5 and 20.7, respectively. Nearly 47.1% of the isolates were sensitive to the four anti-tuberculous drugs, while only one isolate was resistant to all four drugs. In addition, several new and known mutations were identified by WGS. High rates of drug resistance and new mutations were identified in our isolates. Tuberculosis control measures should focus on the spread of mono (S, I, R, E)- and double (S, E)-drug resistant strains present at higher rates throughout the whole Nile Delta, Egypt.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Egipto/epidemiología , Humanos , Antituberculosos/farmacología , Secuenciación Completa del Genoma/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Mutación , Adulto , Genoma Bacteriano , Masculino , Femenino , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Variación Genética , Persona de Mediana Edad , Estreptomicina/farmacología
18.
Sci Rep ; 14(1): 20379, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223208

RESUMEN

The tannery industry produces one of the worst contaminants, and unsafe disposal in nearby waterbodies and landfills has become an imminent threat to public health, especially when the resulting multidrug-resistant bacteria and heavy metals enter community settings and animal food chains. In this study, we have collected 10 tannery wastewater (TWW) samples and 10 additional non-tannery wastewater (NTW) samples to compare the chemical oxygen demand (COD), pH, biological oxygen demand (BOD), dissolved oxygen (DO), total dissolved solids (TDS), chromium concentration, bacterial load, and antibiotic resistance profiles. While COD, pH, and chromium concentration data were previously published from our lab, this part of the study uncovers that TWW samples had a significantly higher bacterial load, compared to the non-tannery wastewater samples (5.89 × 104 and 9.38 × 103 cfu/mL, respectively), higher BOD and TDS values, and significantly lower DO values. The results showed that 53.4, 46.7, 40.0, and 40.0% of the TWW isolates were resistant to ceftriaxone, erythromycin, nalidixic acid, and azithromycin, respectively. On the other hand, 20.0, 30.0, 50.0, and 40.0% of the NTW isolates were resistant to the same antibiotics, respectively. These findings suggest that the TWW isolates were more resistant to antibiotics than the NTW isolates. Moreover, the TWW isolates exhibited higher multidrug resistance than the NTW isolates, 33.33, and 20.00%, respectively. Furthermore, spearman correlation analysis depicts that there is a negative correlation between BOD and bacterial load up to a certain level (r = - 0.7749, p = 0.0085). In addition, there is also a consistent negative correlation between COD and bacterial load (r = - 0.7112, p = 0.0252) and TDS and bacterial load (r = - 0.7621, p = 0.0104). These findings suggest that TWW could pose a significant risk to public health and the environment and highlight the importance of proper wastewater treatment in tannery industries.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Curtiembre , Aguas Residuales , Aguas Residuales/microbiología , Bangladesh , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Residuos Industriales/análisis , Análisis de la Demanda Biológica de Oxígeno , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
19.
Funct Integr Genomics ; 24(5): 154, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223360

RESUMEN

Proteus mirabilis is a gram-negative pathogen that caused significant opportunistic infections. In this study we aimed to identify antimicrobial resistance (AMR) genes and virulence determinants in two pan-drug resistant isolate "Bacteria_11" and "Bacteria_27" using whole genome sequencing. Proteus mirabilis "Bacteria_11" and "Bacteria_27" were isolated from two different hospitalized patients in Egypt. Antimicrobial susceptibility determined using Vitek 2 system, then whole genome sequencing (WGS) using MinION nanopore sequencing was done. Antimicrobial resistant genes and virulence determinants were identified using ResFinder, CADR AMR database, Abricate tool and VF analyzer were used respectively. Multiple sequence alignment was performed using MAFFT and FastTree, respectively. All genes were present within bacterial chromosome and no plasmid was detected. "Bacteria_11" and "Bacteria_27" had sizes of approximately 4,128,657 bp and 4,120,646 bp respectively, with GC content of 39.15% and 39.09%. "Bacteria_11" and "Bacteria_27" harbored 43 and 42 antimicrobial resistance genes respectively with different resistance mechanisms, and up to 55 and 59 virulence genes respectively. Different resistance mechanisms were identified: antibiotic inactivation, antibiotic efflux, antibiotic target replacement, and antibiotic target change. We identified several genes associated with aminoglycoside resistance, sulfonamide resistance. trimethoprim resistance tetracycline resistance proteins. Also, those responsible for chloramphenicol resistance. For beta-lactam resistance, only blaVEB and blaCMY-2 genes were detected. Genome analysis revealed several virulence factors contribution in isolates pathogenicity and bacterial adaptation. As well as numerous typical secretion systems (TSSs) were present in the two isolates, including T6SS and T3SS. Whole genome sequencing of both isolates identify their genetic context of antimicrobial resistant genes and virulence determinants. This genomic analysis offers detailed representation of resistant mechanisms. Also, it clarifies P. mirabilis ability to acquire resistance and highlights the emergence of extensive drug resistant (XDR) and pan-drug resistant (PDR) strains. This may help in choosing the most appropriate antibiotic treatment and limiting broad spectrum antibiotic use.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteus mirabilis , Factores de Virulencia , Proteus mirabilis/genética , Proteus mirabilis/patogenicidad , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Factores de Virulencia/genética , Genoma Bacteriano , Humanos , Antibacterianos/farmacología , Secuenciación Completa del Genoma , Virulencia/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Proteus/microbiología , Infecciones por Proteus/tratamiento farmacológico
20.
BMC Infect Dis ; 24(1): 911, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227823

RESUMEN

BACKGROUND: The 2016 IDSA guideline recommends a treatment duration of at least 7 days for hospital-acquired (HAP)/ventilator-associated pneumonia (VAP). The limited literature has demonstrated higher rates of recurrence for non-glucose fermenting gram-negative bacilli with short course therapy, raising the concern of optimal treatment duration for these pathogens. Therefore, we aimed to compare the outcomes for patients receiving shorter therapy treatment (≤ 8 days) versus longer regimen (> 8 days) for the treatment of multidrug resistant (MDR) Pseudomonas pneumonia. METHODS: A single-center, retrospective cohort study was conducted to evaluate adult patients receiving an antimicrobial regimen with activity against MDR Pseudomonas aeruginosa in respiratory culture between 2017 and 2020 for a minimum of 6 consecutive days. Exclusion criteria were inmates, those with polymicrobial pneumonia, community-acquired pneumonia, and infections requiring prolonged antibiotic therapy. RESULTS: Of 427 patients with MDR P. aeruginosa respiratory isolates, 85 patients were included. Baseline characteristics were similar among groups with a median age of 65.5 years and median APACHE 2 score of 20. Roughly 75% had ventilator-associated pneumonia. Compared to those who received ≤ 8 days of therapy, no difference was seen for clinical success in patients treated for more than 8 days (80% vs. 65.5%, p = 0.16). The number of 30-day and 90-day in-hospital mortality, 30-days relapse, and other secondary outcomes did not significantly differ among the treatment groups. CONCLUSIONS: Prolonging treatment duration beyond 8 days did not improve patient outcomes for MDR P. aeruginosa HAP/VAP.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Masculino , Femenino , Pseudomonas aeruginosa/efectos de los fármacos , Estudios Retrospectivos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Anciano , Persona de Mediana Edad , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/mortalidad , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Neumonía Asociada al Ventilador/mortalidad , Resultado del Tratamiento , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/mortalidad , Duración de la Terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA