Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.753
Filtrar
1.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39245849

RESUMEN

Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.


Asunto(s)
Electroencefalografía , Emociones , Dolor , Humanos , Masculino , Femenino , Emociones/fisiología , Dolor/psicología , Dolor/fisiopatología , Adulto Joven , Adulto , Potenciales Evocados/fisiología , Percepción del Dolor/fisiología , Encéfalo/fisiología , Estimulación Eléctrica , Estimulación Luminosa/métodos , Dimensión del Dolor , Mapeo Encefálico
2.
Proc Natl Acad Sci U S A ; 121(37): e2411293121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236235

RESUMEN

The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.


Asunto(s)
Movimientos Sacádicos , Campos Visuales , Percepción Visual , Humanos , Movimientos Sacádicos/fisiología , Adulto , Percepción Visual/fisiología , Femenino , Masculino , Campos Visuales/fisiología , Estimulación Luminosa/métodos , Adulto Joven , Sensibilidad de Contraste/fisiología
3.
Cephalalgia ; 44(9): 3331024241276501, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279320

RESUMEN

BACKGROUND: It is still debatable whether the mechanisms underlying photophobia are related to altered visual cortex excitability or specific abnormalities of colour-related focal macular retino-thalamic information processing. METHODS: This cross-sectional study examined Ganzfeld blue-red (B-R) and blue-yellow (B-Y) focal macular cone flash ERG (ffERG) and focal-flash visual evoked potentials (ffVEPs) simultaneously in a group of migraine patients with (n = 18) and without (n = 19) aura during the interictal phase, in comparison to a group of healthy volunteers (HVs) (n = 20). We correlate the resulting retinal and cortical electrophysiological responses with subjective discomfort from exposure to bright light verified on a numerical scale. RESULTS: Compared to HVs, the amplitude and phase of the first and second harmonic of ffERG and ffVEPs were non-significantly different in migraine patients without aura and migraine patients with aura for both the B-R and the B-Y focal stimuli. Pearson's correlation test did not disclose correlations between clinical variables, including the photophobia scale and electrophysiological variables. CONCLUSIONS: These results do not favour interictal functional abnormalities in L-M- and S-cone opponent visual pathways in patients with migraine. They also suggest that the discomfort resulting from exposure to bright light is not related to focal macular retinal-to-visual cortex pathway.


Asunto(s)
Electrorretinografía , Potenciales Evocados Visuales , Trastornos Migrañosos , Fotofobia , Células Fotorreceptoras Retinianas Conos , Humanos , Fotofobia/fisiopatología , Femenino , Masculino , Adulto , Potenciales Evocados Visuales/fisiología , Estudios Transversales , Trastornos Migrañosos/fisiopatología , Células Fotorreceptoras Retinianas Conos/fisiología , Persona de Mediana Edad , Estimulación Luminosa/métodos , Adulto Joven
4.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233375

RESUMEN

Our understanding of the neurobiology underlying cognitive dysfunction in persons with cerebral palsy is very limited, especially in the neurocognitive domain of visual selective attention. This investigation utilized magnetoencephalography and an Eriksen arrow-based flanker task to quantify the dynamics underlying selective attention in a cohort of youth and adults with cerebral palsy (n = 31; age range = 9 to 47 yr) and neurotypical controls (n = 38; age range = 11 to 49 yr). The magnetoencephalography data were transformed into the time-frequency domain to identify neural oscillatory responses and imaged using a beamforming approach. The behavioral results indicated that all participants exhibited a flanker effect (greater response time for the incongruent compared to congruent condition) and that individuals with cerebral palsy were slower and less accurate during task performance. We computed interference maps to focus on the attentional component and found aberrant alpha (8 to 14 Hz) oscillations in the right primary visual cortices in the group with cerebral palsy. Alpha and theta (4 to 7 Hz) oscillations were also seen in the left and right insula, and these oscillations varied with age across all participants. Overall, persons with cerebral palsy exhibit deficiencies in the cortical dynamics serving visual selective attention, but these aberrations do not appear to be uniquely affected by age.


Asunto(s)
Ritmo alfa , Atención , Parálisis Cerebral , Magnetoencefalografía , Humanos , Adulto , Parálisis Cerebral/fisiopatología , Adolescente , Masculino , Femenino , Adulto Joven , Atención/fisiología , Niño , Persona de Mediana Edad , Ritmo alfa/fisiología , Percepción Visual/fisiología , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología
5.
J Vis ; 24(9): 1, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226069

RESUMEN

Most research on visual search has used simple tasks presented on a computer screen. However, in natural situations visual search almost always involves eye, head, and body movements in a three-dimensional (3D) environment. The different constraints imposed by these two types of search tasks might explain some of the discrepancies in our understanding concerning the use of memory resources and the role of contextual objects during search. To explore this issue, we analyzed a visual search task performed in an immersive virtual reality apartment. Participants searched for a series of geometric 3D objects while eye movements and head coordinates were recorded. Participants explored the apartment to locate target objects whose location and visibility were manipulated. For objects with reliable locations, we found that repeated searches led to a decrease in search time and number of fixations and to a reduction of errors. Searching for those objects that had been visible in previous trials but were only tested at the end of the experiment was also easier than finding objects for the first time, indicating incidental learning of context. More importantly, we found that body movements showed changes that reflected memory for target location: trajectories were shorter and movement velocities were higher, but only for those objects that had been searched for multiple times. We conclude that memory of 3D space and target location is a critical component of visual search and also modifies movement kinematics. In natural search, memory is used to optimize movement control and reduce energetic costs.


Asunto(s)
Movimientos Oculares , Memoria Espacial , Realidad Virtual , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Movimientos Oculares/fisiología , Memoria Espacial/fisiología , Percepción Espacial/fisiología , Movimientos de la Cabeza/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Tiempo de Reacción/fisiología
6.
Proc Natl Acad Sci U S A ; 121(37): e2408067121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226351

RESUMEN

Humans explore visual scenes by alternating short fixations with saccades directing the fovea to points of interest. During fixation, the visual system not only examines the foveal stimulus at high resolution, but it also processes the extrafoveal input to plan the next saccade. Although foveal analysis and peripheral selection occur in parallel, little is known about the temporal dynamics of foveal and peripheral processing upon saccade landing, during fixation. Here we investigate whether the ability to localize changes across the visual field differs depending on when the change occurs during fixation, and on whether the change localization involves foveal, extrafoveal processing, or both. Our findings reveal that the ability to localize changes in peripheral areas of the visual field improves as a function of time after fixation onset, whereas localization accuracy for foveal stimuli remains approximately constant. Importantly, this pattern holds regardless of whether individuals monitor only foveal or peripheral stimuli, or both simultaneously. Altogether, these results show that the visual system is more attuned to the foveal input early on during fixation, whereas change localization for peripheral stimuli progressively improves throughout fixation, possibly as a consequence of an increased readiness to plan the next saccade.


Asunto(s)
Fijación Ocular , Fóvea Central , Movimientos Sacádicos , Campos Visuales , Humanos , Fijación Ocular/fisiología , Fóvea Central/fisiología , Movimientos Sacádicos/fisiología , Masculino , Femenino , Adulto , Campos Visuales/fisiología , Adulto Joven , Estimulación Luminosa/métodos , Percepción Visual/fisiología
7.
J Vis ; 24(9): 8, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39254964

RESUMEN

Classic change blindness is the phenomenon where seemingly obvious changes that coincide with visual disruptions (such as blinks or brief blanks) go unnoticed by an attentive observer. Some early work into the causes of classic change blindness suggested that any pre-change stimulus representation is overwritten by a representation of the altered post-change stimulus, preventing change detection. However, recent work revealed that, even when observers do maintain memory representations of both the pre- and post-change stimulus states, they can still miss the change, suggesting that change blindness can also arise from a failure to compare the stored representations. Here, we studied slow change blindness, a related phenomenon that occurs even in the absence of visual disruptions when the change occurs sufficiently slowly, to determine whether it could be explained by conclusions from classic change blindness. Across three different slow change blindness experiments we found that observers who consistently failed to notice the change had access to at least two memory representations of the changing display. One representation was precise but short lived: a detailed representation of the more recent stimulus states, but fragile. The other representation lasted longer but was fairly general: stable but too coarse to differentiate the various stages of the change. These findings suggest that, although multiple representations are formed, the failure to compare hypotheses might not explain slow change blindness; even if a comparison were made, the representations would be too sparse (longer term stores) or too fragile (short-lived stores) for such comparison to inform about the change.


Asunto(s)
Estimulación Luminosa , Humanos , Estimulación Luminosa/métodos , Atención/fisiología , Memoria/fisiología , Adulto , Percepción Visual/fisiología , Adulto Joven , Masculino , Femenino
8.
J Vis ; 24(9): 9, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39259169

RESUMEN

The contents of visual perception are inherently dynamic-just as we experience objects in space, so too events in time. The boundaries between these events have downstream consequences. For example, memory for incidentally encountered items is impaired when walking through a doorway, perhaps because event boundaries serve as cues to clear obsolete information from previous events. Although this kind of "memory flushing" can be adaptive, work on visual working memory (VWM) has focused on the opposite function of active maintenance in the face of distraction. How do these two cognitive operations interact? In this study, observers watched animations in which they walked through three-dimensionally rendered rooms with picture frames on the walls. Within the frames, observers either saw images that they had to remember ("encoding") or recalled images they had seen in the immediately preceding frame ("test"). Half of the time, a doorway was crossed during the delay between encoding and test. Across experiments, there was a consistent memory decrement for the first image encoded in the doorway compared to the no-doorway condition while equating time elapsed, distance traveled, and distractibility of the doorway. This decrement despite top-down VWM efforts highlights the power of event boundaries to structure what and when we forget.


Asunto(s)
Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Adulto Joven , Percepción Visual/fisiología , Masculino , Atención/fisiología , Femenino , Estimulación Luminosa/métodos , Adulto , Señales (Psicología)
9.
J Vis ; 24(9): 10, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39259170

RESUMEN

The lightness of a surface depends not only on the amount of light reflected off, it but also on the context in which it is embedded. Despite a long history of research, neural correlates of context-dependent lightness perception remain a topic of ongoing debate. Here, we seek to expand on the existing literature by measuring functional magnetic resonance imaging (fMRI) responses to lightness variations induced by the context. During the fMRI experiment, we presented 10 participants with a dynamic stimulus in which either the luminance of a disk or its surround is modulated at four different frequencies ranging from 1 to 8 Hz. Behaviorally, when the surround luminance is modulated at low frequencies, participants perceive an illusory change in the lightness of the disk (lightness induction). In contrast, they perceive little or no induction at higher frequencies. Using this frequency dependence and controlling for long-range responses to border contrast and luminance changes, we found that activity in the primary visual cortex (V1) correlates with lightness induction, providing further evidence for the involvement of V1 in the processing of context-dependent lightness.


Asunto(s)
Sensibilidad de Contraste , Imagen por Resonancia Magnética , Estimulación Luminosa , Humanos , Imagen por Resonancia Magnética/métodos , Adulto , Masculino , Estimulación Luminosa/métodos , Femenino , Sensibilidad de Contraste/fisiología , Adulto Joven , Corteza Visual Primaria/fisiología , Corteza Visual/fisiología , Luz
10.
Sci Rep ; 14(1): 21335, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266687

RESUMEN

Cinema, a modern titan of entertainment, holds power to move people with the artful manipulation of auditory and visual stimuli. Despite this, the mechanisms behind how sensory stimuli elicit emotional responses are unknown. Thus, this study evaluated which brain regions were involved when sensory stimuli evoke auditory- or visual-driven emotions during film viewing. Using functional magnetic resonance imaging (fMRI) decoding techniques, we found that brain activities in the auditory area and insula represent the stimuli that evoke emotional response. The observation of brain activities in these regions could provide further insights to these mechanisms for the improvement of film-making, as well as the development of novel neural techniques in neuroscience. In near feature, such a "neuro-designed" products/ applications might gain in popularity.


Asunto(s)
Corteza Auditiva , Mapeo Encefálico , Emociones , Corteza Insular , Imagen por Resonancia Magnética , Humanos , Emociones/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Estimulación Acústica , Estimulación Luminosa/métodos
11.
J Neural Eng ; 21(5)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39231466

RESUMEN

Objective.Steady-state visual evoked potentials (SSVEPs) in response to flickering stimuli are popular in brain-computer interfacing but their implementation in virtual reality (VR) offers new opportunities also for clinical applications. While traditional SSVEP target selection relies on single-frequency stimulation of both eyes simultaneously, further called congruent stimulation, recent studies attempted to improve the information transfer rate by using dual-frequency-coded SSVEP where each eye is presented with a stimulus flickering at a different frequency, further called incongruent stimulation. However, few studies have investigated incongruent multifrequency-coded SSVEP (MultiIncong-SSVEP).Approach.This paper reports on a systematical investigation of incongruent dual-, triple-, and quadruple-frequency-coded SSVEP for use in VR, several of which are entirely novel, and compares their performance with that of congruent dual-frequency-coded SSVEP.Main results.We were able to confirm the presence of a summation effect when comparing monocular- and binocular single-frequency congruent stimulation, and a suppression effect when comparing monocular- and binocular dual-frequency incongruent stimulation, as both tap into the binocular vision capabilities which, when hampered, could signal amblyopia.Significance.In sum, our findings not only evidence the potential of VR-based binocularly incongruent SSVEP but also underscore the importance of paradigm choice and decoder design to optimize system performance and user comfort.


Asunto(s)
Electroencefalografía , Potenciales Evocados Visuales , Estudios de Factibilidad , Estimulación Luminosa , Realidad Virtual , Visión Binocular , Humanos , Potenciales Evocados Visuales/fisiología , Visión Binocular/fisiología , Masculino , Femenino , Adulto , Estimulación Luminosa/métodos , Adulto Joven , Electroencefalografía/métodos , Interfaces Cerebro-Computador
13.
J Vis ; 24(9): 4, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39240585

RESUMEN

When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.


Asunto(s)
Atención , Estimulación Luminosa , Percepción Espacial , Humanos , Atención/fisiología , Percepción Espacial/fisiología , Estimulación Luminosa/métodos , Campos Visuales/fisiología , Masculino , Adulto , Adulto Joven , Femenino
14.
J Vis ; 24(9): 5, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39240584

RESUMEN

Our brains do not always encode visual information in a veridical way. Visual working memory (WM) for features such as color can be biased. WM bias comes from several sources. Category priors can lead to WM bias. For example, color WM is biased toward or away from category prototypes. In addition to category knowledge, contextual factors can induce and modulate WM bias; however, these biases of different sources have usually been investigated independently with different tasks. The present study sought to explore how color WM is influenced by both color category and concurrent distractor. Specifically, we asked participants to retain two color items in WM to investigate how the WM representation of the target color is biased by learned category knowledge and contextual inter-item interactions. Our study found that the WM representation of the target color is biased toward or away from the category prototypes and away from the distractor color that is simultaneously held in WM, indicating that both color category and concurrent distractor bias color WM. More importantly, the weight of these two biases depends on the specific color category, suggesting that category priors and inter-item interaction biases are not simply additive but flexible. Furthermore, we revealed that both types of biases arise from perceptual processes.


Asunto(s)
Percepción de Color , Memoria a Corto Plazo , Estimulación Luminosa , Humanos , Memoria a Corto Plazo/fisiología , Percepción de Color/fisiología , Adulto Joven , Femenino , Masculino , Estimulación Luminosa/métodos , Adulto , Atención/fisiología
15.
J Vis ; 24(9): 11, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39269364

RESUMEN

It has been demonstrated that observers can accurately estimate their self-motion direction (i.e., heading) from optic flow, which can be affected by attention. However, it remains unclear how attention affects the serial dependence in the estimation. In the current study, participants conducted two experiments. The results showed that the estimation accuracy decreased when attentional resources allocated to the heading estimation task were reduced. Additionally, the estimates of currently presented headings were biased toward the headings of previously seen headings, showing serial dependence. Especially, this effect decreased (increased) when the attentional resources allocated to the previously (currently) seen headings were reduced. Furthermore, importantly, we developed a Bayesian inference model, which incorporated attention-modulated likelihoods and qualitatively predicted changes in the estimation accuracy and serial dependence. In summary, the current study shows that attention affects the serial dependence in heading estimation from optic flow and reveals the Bayesian computational mechanism behind the heading estimation.


Asunto(s)
Atención , Teorema de Bayes , Percepción de Movimiento , Flujo Optico , Humanos , Atención/fisiología , Flujo Optico/fisiología , Percepción de Movimiento/fisiología , Adulto Joven , Estimulación Luminosa/métodos , Masculino , Adulto , Femenino
16.
Int J Psychophysiol ; 204: 112409, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39121995

RESUMEN

Performance monitoring has been widely studied during different forced-choice response tasks. Participants typically show longer response times (RTs) and increased accuracy following errors, but there are inconsistencies regarding the connection between error-related event-related brain potentials (ERPs) and behavior, such as RT and accuracy. The specific task in any given study could contribute to these inconsistencies, as different tasks may require distinct cognitive processes that impact ERP-behavior relationships. The present study sought to determine whether task moderates ERP-behavior relationships and whether these relationships are robustly observed when tasks and stimuli are treated as random effects. ERPs and behavioral indices (RTs and accuracy) recorded during flanker, Stroop, and Go/Nogo tasks from 180 people demonstrated a task-specific effect on ERP-behavior relationships, such that larger previous-trial error-related negativity (ERN) predicted longer RTs and greater likelihood of a correct response on subsequent trials during flanker and Stroop tasks but not during Go/Nogo task. Additionally, larger previous-trial error positivity (Pe) predicted faster RTs and smaller variances of RTs on subsequent trials for Stroop and Go/Nogo tasks but not for flanker task. When tasks and stimuli were treated as random effects, ERP-behavior relationships were not observed. These findings support the need to consider the task used for recording performance monitoring measures when interpreting results across studies.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Desempeño Psicomotor , Tiempo de Reacción , Test de Stroop , Humanos , Femenino , Masculino , Tiempo de Reacción/fisiología , Adulto Joven , Potenciales Evocados/fisiología , Adulto , Desempeño Psicomotor/fisiología , Adolescente , Inhibición Psicológica , Estimulación Luminosa/métodos , Conducta de Elección/fisiología
17.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39191663

RESUMEN

The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.


Asunto(s)
Juicio , Imagen por Resonancia Magnética , Lectura , Humanos , Masculino , Femenino , Juicio/fisiología , Adulto Joven , Adulto , Estimulación Luminosa/métodos , Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología , Semántica , Lóbulo Temporal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen
18.
J Vis ; 24(8): 13, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39177997

RESUMEN

Motion can produce large changes in the apparent locations of briefly flashed tests presented on or near the motion. These motion-induced position shifts may have a variety of sources. They may be due to a frame effect where the moving pattern provides a frame of reference for the locations of events within it. The motion of the background may act through high-level mechanisms that track its explicit contours or the motion may act on position through the signals from low-level motion detectors. Here we isolate the contribution of low-level motion by eliminating explicit contours and trackable features. In this case, motion still supports a robust shift in probe locations with the shift being in the direction of the motion that follows the probe. Although robust, the magnitude of the shift in our first experiment is about 20% of the shift seen in a previous study with explicit frames and, in the second, about 45% of that found with explicit frames. Clearly, low-level motion alone can produce position shifts although the magnitude is much reduced compared to that seen when high-level mechanisms can contribute.


Asunto(s)
Percepción de Movimiento , Estimulación Luminosa , Humanos , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Percepción de Forma/fisiología
19.
BMC Neurosci ; 25(1): 40, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192193

RESUMEN

BACKGROUND: Using event-related potentials (ERPs), we aimed to investigate audiovisual integration neural mechanisms during a letter identification task in the left and right sides. Unimodal (A,V) and bimodal (AV) stimuli were presented on either side, with ERPs from unimodal (A,V) stimuli on the same side being compared to those from simultaneous bimodal stimuli (AV). Non-zero results of the AV-(A + V) difference waveforms indicated audiovisual integration on the left/right side. RESULTS: When spatially coherent AV stimuli were presented on the right side, two significant ERP components in the integrated differential wave were noted. The N134 and N262, present in the first 300 ms of the AV-(A + V) integration difference wave, indicated significant audiovisual integration effects. However, when these stimuli were presented on the left side, there were no significant integration components. This audiovisual integration difference may stem from left/right asymmetry of cerebral hemisphere language processing. CONCLUSIONS: Audiovisual letter information presented on the right side was easier to integrate, process, and represent. Additionally, only one significant integrative component peaked at 140 ms in the parietal cortex for spatially non-coherent AV stimuli and provided audiovisual multisensory integration, which could be attributed to some integrative neural processes that depend on the spatial congruity of the auditory and visual stimuli.


Asunto(s)
Estimulación Acústica , Percepción Auditiva , Electroencefalografía , Potenciales Evocados , Lateralidad Funcional , Estimulación Luminosa , Percepción Visual , Humanos , Masculino , Femenino , Adulto Joven , Percepción Auditiva/fisiología , Lateralidad Funcional/fisiología , Percepción Visual/fisiología , Estimulación Luminosa/métodos , Adulto , Estimulación Acústica/métodos , Potenciales Evocados/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología
20.
Hum Brain Mapp ; 45(12): e70009, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39185690

RESUMEN

Attention and crossmodal interactions are closely linked through a complex interplay at different stages of sensory processing. Within the context of motion perception, previous research revealed that attentional demands alter audiovisual interactions in the temporal domain. In the present study, we aimed to understand the neurophysiological correlates of these attentional modulations. We utilized an audiovisual motion paradigm that elicits auditory time interval effects on perceived visual speed. The audiovisual interactions in the temporal domain were quantified by changes in perceived visual speed across different auditory time intervals. We manipulated attentional demands in the visual field by having a secondary task on a stationary object (i.e., single- vs. dual-task conditions). When the attentional demands were high (i.e., dual-task condition), there was a significant decrease in the effects of auditory time interval on perceived visual speed, suggesting a reduction in audiovisual interactions. Moreover, we found significant differences in both early and late neural activities elicited by visual stimuli across task conditions (single vs. dual), reflecting an overall increase in attentional demands in the visual field. Consistent with the changes in perceived visual speed, the audiovisual interactions in neural signals declined in the late positive component range. Compared with the findings from previous studies using different paradigms, our findings support the view that attentional modulations of crossmodal interactions are not unitary and depend on task-specific components. They also have important implications for motion processing and speed estimation in daily life situations where sensory relevance and attentional demands constantly change.


Asunto(s)
Atención , Percepción Auditiva , Electroencefalografía , Estimulación Luminosa , Campos Visuales , Humanos , Atención/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Percepción Auditiva/fisiología , Campos Visuales/fisiología , Estimulación Luminosa/métodos , Percepción de Movimiento/fisiología , Estimulación Acústica , Percepción Visual/fisiología , Mapeo Encefálico , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA