Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110.984
Filtrar
1.
Methods Mol Biol ; 2848: 269-297, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240529

RESUMEN

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Asunto(s)
Biotinilación , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Mapeo de Interacción de Proteínas , Factores de Transcripción , Mapeo de Interacción de Proteínas/métodos , Humanos , Factores de Transcripción/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Unión Proteica , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Endonucleasas , Enzimas Multifuncionales
2.
Methods Mol Biol ; 2854: 93-106, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192122

RESUMEN

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.


Asunto(s)
Inmunidad Innata , Proteómica , Proteómica/métodos , Cromatografía Liquida/métodos , Humanos , Western Blotting/métodos , Espectrometría de Masas/métodos , Inmunoprecipitación/métodos , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Cromatografía Líquida con Espectrometría de Masas
3.
Methods Mol Biol ; 2854: 29-34, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192115

RESUMEN

Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.


Asunto(s)
Inmunoprecipitación , Fosfoproteínas , Espectrometría de Masas en Tándem , Fosforilación , Espectrometría de Masas en Tándem/métodos , Inmunoprecipitación/métodos , Cromatografía Liquida/métodos , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/análisis , Espectrometría de Masas/métodos
4.
Methods Mol Biol ; 2854: 143-151, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192126

RESUMEN

Protein lysine acetylation involved in the antiviral innate immunity contributes to the regulation of antiviral inflammation responses, including type 1 interferon production and interferon-stimulated gene expression. Thus, investigation of acetylated antiviral proteins is vital for the complete understanding of inflammatory responses to viral infections. Immunoprecipitation (IP) assay with anti-targeted-protein antibody or with acetyl-lysine affinity beads followed by immunoblot provides a classical way to determine the potential modified protein in the antiviral innate pathways, whereas mass spectrometry can be utilized to identify the accurate acetylation lysine residues or explore the acetyl-proteomics. We demonstrate here comprehensive methods of protein lysine acetylation determination in virus-infected macrophages and embryonic fibroblast cells or proteins-overexpressed HEK 293 T cells in the context of antiviral innate immunity.


Asunto(s)
Inmunidad Innata , Lisina , Humanos , Acetilación , Lisina/metabolismo , Células HEK293 , Inmunoprecipitación/métodos , Macrófagos/inmunología , Macrófagos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Animales , Espectrometría de Masas/métodos , Ratones , Fibroblastos/metabolismo , Fibroblastos/inmunología , Fibroblastos/virología
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173322

RESUMEN

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.


Asunto(s)
Aminas , Poliésteres , Espectrometría Raman , Poliésteres/química , Espectrometría Raman/métodos , Cromatografía Liquida/métodos , Aminas/análisis , Aminas/química , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis , Embalaje de Alimentos , Cromatografía Líquida con Espectrometría de Masas
6.
Food Chem ; 462: 140965, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197242

RESUMEN

Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.


Asunto(s)
Cinnamomum zeylanicum , Contaminación de Alimentos , Hojas de la Planta , Aceites de Plantas , Contaminación de Alimentos/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis , Hojas de la Planta/química , Cinnamomum zeylanicum/química , Perilla/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos
7.
Food Chem ; 462: 140986, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208737

RESUMEN

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Asunto(s)
Camellia sinensis , Aromatizantes , Lipidómica , Espectrometría de Masas , Metabolómica , Hojas de la Planta , Estaciones del Año , Camellia sinensis/química , Camellia sinensis/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía Líquida de Alta Presión , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Gusto , Odorantes/análisis , Lípidos/análisis , Lípidos/química
8.
Food Chem ; 462: 140853, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208738

RESUMEN

Chemicals from packaging materials might be transferred into food resulting in consumer exposure. Identifying these migrated chemicals is highly challenging and crucial to perform their safety assessment, usually starting by the understanding of the chemical composition of the packaging material itself. This study explores the use of the Molecular Networking (MN) approach to support identification of the extracted chemicals. Two formulations of bioplastics were analyzed using Liquid Chromatography hyphenated to High-Resolution Mass Spectrometry. Data processing and interpretation using a conventional manual method was performed as a point of comparison to understand the power of MN. Interestingly, only the MN approach facilitated the identification of unknown chemicals belonging to a novel oligomer series containing the azelaic acid monomer. The MN approach provided a faster visualization of chemical families in addition to the highlight of unrelated chemicals enabling to prioritize chemicals for further investigation improving the safety assessment of packaging materials.


Asunto(s)
Embalaje de Alimentos , Embalaje de Alimentos/instrumentación , Contaminación de Alimentos/análisis , Espectrometría de Masas , Cromatografía Líquida de Alta Presión
9.
Food Chem ; 462: 141002, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216371

RESUMEN

Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.


Asunto(s)
Envejecimiento , Antioxidantes , Forsythia , Frutas , Galactosa , Extractos Vegetales , Hojas de la Planta , Animales , Forsythia/química , Hojas de la Planta/química , Ratones , Frutas/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Antioxidantes/química , Antioxidantes/farmacología , Envejecimiento/efectos de los fármacos , Masculino , Humanos , Espectrometría de Masas
10.
Food Chem ; 462: 140977, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39232274

RESUMEN

The impact of seasonal variations on the quality of oolong tea products remains a subject of ongoing exploration. This study delves into the intricate relationships between seasonality, metabolites, and sensory characteristics in finished oolong tea products. Metabolomic data from 266 Tieguanyin oolong tea products harvested in both spring and autumn, along with corresponding sensory evaluations, were acquired. Using OPLS-DA and PLS-DA models with UPLC-QToF/MS data, our findings showed that seasonal effects were notably more pronounced in light-scented Tieguanyin products (lightly-roasted) compared to strong-scented products (moderately-roasted). Furthermore, over half of the identified key seasonal discriminant metabolites happened to be crucial for determining the sensory grade. The study marks the first-time recognition of triterpene saponins as critical factors in determining both the harvest season and the sensory grade of oolong tea. These insights deepen our understanding of the interplays between seasonal variations, metabolites, and sensory attributes in oolong tea products.


Asunto(s)
Camellia sinensis , Estaciones del Año , Gusto , , Camellia sinensis/química , Camellia sinensis/metabolismo , Té/química , Té/metabolismo , Humanos , Metabolómica , Cromatografía Líquida de Alta Presión , Odorantes/análisis , Espectrometría de Masas
11.
J Environ Sci (China) ; 149: 431-443, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181655

RESUMEN

To investigate the seasonal characteristics in air pollution in Chengdu, a single particle aerosol mass spectrometry was used to continuously observe atmospheric fine particulate matter during one-month periods in summer and winter, respectively. The results showed that, apart from O3, the concentrations of other pollutants (CO, NO2, SO2, PM2.5 and PM10) were significantly higher in winter than in summer. All single particle aerosols were divided into seven categories: biomass burning (BB), coal combustion (CC), Dust, vehicle emission (VE), K mixed with nitrate (K-NO3), K mixed with sulfate and nitrate (K-SN), and K mixed with sulfate (K-SO4) particles. The highest contributions in both seasons were VE particles (24%). The higher contributions of K-SO4 (16%) and K-NO3 (10%) particles occurred in summer and winter, respectively, as a result of their different formation mechanisms. S-containing (K-SO4 and K-SN), VE, and BB particles caused the evolution of pollution in both seasons, and they can be considered as targets for future pollution reduction. The mixing of primary sources particles (VE, Dust, CC, and BB) with secondary components was stronger in winter than in summer. In summer, as pollution worsens, the mixing of primary sources particles with 62 [NO3]- weakened, but the mixing with 97 [HSO4]- increased. However, in winter, the mixing state of particles did not exhibit an obvious evolution rules. The potential source areas in summer were mainly distributed in the southern region of Sichuan, while in winter, besides the southern region, the contribution of the western region cannot be ignored.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Estaciones del Año , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China , Contaminación del Aire/estadística & datos numéricos , Espectrometría de Masas , Tamaño de la Partícula
12.
J Environ Sci (China) ; 149: 500-511, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181662

RESUMEN

Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.


Asunto(s)
Espectrometría de Masas , Espectrometría de Masas/métodos , Contaminantes Atmosféricos/análisis , Yoduros/análisis , Yoduros/química , Rayos Ultravioleta , Formiatos/análisis , Formiatos/química , Atmósfera/química , Monitoreo del Ambiente/métodos , Procesos Fotoquímicos , Ácido Acético/análisis , Ácido Acético/química , Hidrocarburos Yodados/análisis , Hidrocarburos Yodados/química
13.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003046

RESUMEN

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Hidrocarburos , Rhodococcus , Rhodococcus/metabolismo , Reactores Biológicos/microbiología , Hidrocarburos/metabolismo , Carbono/metabolismo , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/análisis , Espectrometría de Masas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados del Benceno , Pentanos
14.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003062

RESUMEN

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Asunto(s)
Monitoreo del Ambiente , Lagos , Lagos/química , China , Monitoreo del Ambiente/métodos , Eutrofización , Sustancias Húmicas/análisis , Calidad del Agua , Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Ecosistema
15.
Anal Chim Acta ; 1325: 343135, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244297

RESUMEN

BACKGROUND: Mass spectrometry (MS)-based proteomics is a powerful tool for identifying and quantifying proteins. However, chimeric spectra caused by the fragmentation of multiple precursors within the same isolation window impair the accuracy of peptide identification and isobaric mass tag-based quantification. While there have been advances in computational deconvolution of chimeric spectra and methods to further separate the peptides by ion mobility or through MSn, the use of narrower isolation windows to decrease the fraction of chimeric species remains to be fully explored. RESULTS: We present results obtained on a SCIEX TripleTOF instrument where the quadrupole was optimized and tuned for precursor isolation at 0.1 Da (FWHH). Using a three-proteome model (trypsin digest of protein lysates from yeast, human and E. coli) and 8-plex iTRAQ labeling to document the interference effect, we investigated the impact of co-fragmentation on spectral purity, identification accuracy and quantification accuracy. The narrow quadrupole isolation window significantly improved the spectral purity and reduced the interference of non-target precursors on quantification accuracy. The high-resolution isolation strategy also reduced the number of false identifications caused by chimeric spectra. While these improvements came at the cost of sensitivity loss, combining high-resolution isolation with other advanced techniques, including ion mobility, may result in improved accuracy in identification and quantification. SIGNIFICANCE: Compared to standard-resolution quadrupole isolation (0.7 Da), high-resolution quadrupole isolation (0.1 Da) significantly improved the spectral purity and quantification accuracy while reducing the number of potential false identifications caused by chimeric spectra, thus showing excellent potential for further development to analyze clinical proteomics samples, for which high accuracy is essential.


Asunto(s)
Proteómica , Proteómica/métodos , Humanos , Iones/química , Escherichia coli/química , Saccharomyces cerevisiae/química , Péptidos/química , Péptidos/análisis , Espectrometría de Masas/métodos
16.
Anal Chim Acta ; 1325: 343124, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244309

RESUMEN

Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS techniques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS data analysis tools is equally important. As most published software packages are not specifically designed for pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI) and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to improve pretreatment efficiency.


Asunto(s)
Espectrometría de Masas , Metabolómica , Análisis de la Célula Individual , Programas Informáticos , Interfaz Usuario-Computador , Metabolómica/métodos , Humanos
17.
Biochemistry (Mosc) ; 89(8): 1349-1361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245450

RESUMEN

Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.


Asunto(s)
Espectrometría de Masas , Proteómica , Proteómica/métodos , Humanos , Proteoma/análisis , Proteoma/metabolismo
18.
J Mol Biol ; 436(17): 168656, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39237202

RESUMEN

Crosslinking mass spectrometry (MS) has emerged as an important technique for elucidating the in-solution structures of protein complexes and the topology of protein-protein interaction networks. However, the expanding user community lacked an integrated visualisation tool that helped them make use of the crosslinking data for investigating biological mechanisms. We addressed this need by developing xiVIEW, a web-based application designed to streamline crosslinking MS data analysis, which we present here. xiVIEW provides a user-friendly interface for accessing coordinated views of mass spectrometric data, network visualisation, annotations extracted from trusted repositories like UniProtKB, and available 3D structures. In accordance with recent recommendations from the crosslinking MS community, xiVIEW (i) provides a standards compliant parser to improve data integration and (ii) offers accessible visualisation tools. By promoting the adoption of standard file formats and providing a comprehensive visualisation platform, xiVIEW empowers both experimentalists and modellers alike to pursue their respective research interests. We anticipate that xiVIEW will advance crosslinking MS-inspired research, and facilitate broader and more effective investigations into complex biological systems.


Asunto(s)
Reactivos de Enlaces Cruzados , Espectrometría de Masas , Espectrometría de Masas/métodos , Reactivos de Enlaces Cruzados/química , Programas Informáticos , Proteínas/química , Mapeo de Interacción de Proteínas/métodos , Bases de Datos de Proteínas , Interfaz Usuario-Computador , Mapas de Interacción de Proteínas
19.
Curr Protoc ; 4(9): e70012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39240240

RESUMEN

The platinum-based anticancer drug cisplatin and its analog carboplatin are the most used chemotherapeutic agents worldwide. It is estimated that approximately half of all cancer patients are treated with platinum drugs at some point during the therapy regimen. Cisplatin covalently binds to purine nucleobases to form DNA adducts. Cisplatin therapy is faced with two key challenges. First, despite the initial response, many patients develop cisplatin resistance. Reduced cellular accumulation of cisplatin is one common cause of therapy resistance. Second, cisplatin treatment causes general cytotoxicity, leading to severe side effects. Monitoring the subcellular concentration of platinum chemotherapeutics will help yield clinical efficacy with the minimum possible dose. Inductively coupled plasma-mass spectrometry (ICP-MS) is an analytical technique to quantify the elemental composition of various types of liquified bulk samples with high sensitivity. This article describes quantifying cisplatin accumulation in chromatin and total cell lysate using ICP-MS. The method involves treating cells with cisplatin, isolating RNA-free DNA, digesting samples, ICP-MS instrumentation, and data analysis. Although we describe these steps in one cancer cell line, the protocol can be adapted to any cell line or tissue. The protocol should be a valuable resource for investigators interested in accurate measurement of subcellular concentration of platinum and other metallo-drugs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Cell culture conditions for A2780 cells and cisplatin treatment Basic Protocol 2: Isolating cellular fractions and sample quantitation Basic Protocol 3: Sample digestion, ICP-MS data collection, and analysis.


Asunto(s)
Antineoplásicos , Cisplatino , Espectrometría de Masas , Humanos , Cisplatino/metabolismo , Cisplatino/farmacología , Espectrometría de Masas/métodos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Platino (Metal)/química , Platino (Metal)/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo
20.
Sci Rep ; 14(1): 20861, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242599

RESUMEN

Canine reproduction differs from that of many other domestic animals, and increased knowledge on biochemical changes during canine pregnancy is important for investigations of infertility or subfertility. The total glycosylation pattern, i.e., the glycome, of body fluids reflects cellular status in health and disease. The aim of the present pilot study was to investigate pregnancy-related changes of the serum N-glycome in bitches. A method based on Rapifluor HILIC-UPLC-FLR-MS was optimized and applied for analysis and quantification of N-glycans in canine serum. Serum samples from six pregnant and five non-pregnant bitches, collected at four well-defined time points, were included. The levels of sialylated and galactosylated complex glycans were significantly elevated in serum from pregnant bitches, consistent with previous reports on human pregnancy. The levels of fucosylated and agalactosylated glycans decreased significantly in pregnant dogs. In non-pregnant dogs, the glycosylation pattern did not change during the cycle. Pregnancy is an inflammatory state, but our findings during canine pregnancy are quite the opposite to changes that have previously been described for dogs with a known parasitic infection. Evaluation of the canine glycome may thus be valuable in studies of canine pregnancy, possibly differing inflammatory changes related to pregnancy to those caused by an infection.


Asunto(s)
Polisacáridos , Animales , Perros , Femenino , Glicosilación , Embarazo , Polisacáridos/sangre , Polisacáridos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Preñez/sangre , Espectrometría de Masas/métodos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA